Options
INGe: Intensity-ground motion dataset for Italy
Author(s)
Language
English
Obiettivo Specifico
4IT. Banche dati
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
1/65 (2022)
ISSN
2037-416X
Publisher
INGV
Pages (printed)
DM102
Issued date
2022
Subjects
Abstract
In this paper we present an updated and homogeneous earthquake dataset for Italy compiled by joining the intensities available in the Italian Macroseismic Database DBMI15 and the peak ground motion (PGM) parameters present in the Engineering Strong-Motion (ESM) accelerometric data bank. The database has been compiled through an extensive procedure of evaluation and revision based on two main steps: 1) the selection of the earthquakes in DBMI15 with homogeneous macroseismic intensities in terms of data sources and 2) the extraction of all the localities reporting intensity data which are located within 3 km from the accelerograph stations that recorded the data. The final dataset includes 519 intensity-PGM data pairs from 65 earthquakes and 227 stations in the time span 1972–2016. The reported intensities are expressed either in the Mercalli-Cancani-Sieberg (MCS) or the European macroseismic (EMS-98) scales.
The events are characterized by magnitudes in the range 4.1–6.8 and depths in the range 0–55 km. Here, we illustrate the data collection and the properties of the database in terms of recording, event and station distributions as well as macroseismic intensity points. Furthermore, we discuss the most relevant features of engineering interest showing several statistics with reference to the most significant metadata (such as moment magnitude, several distance metrics, style of faulting etc). The dataset is expected to be useful for benchmarking existing and for developing new ground motion intensity conversion equations offering a common basis, and sparing the time and effort required for assembling to the interested researchers. The dataset is available at https://zenodo.org/record/4623732#.YNX-AZMzbdc.
The events are characterized by magnitudes in the range 4.1–6.8 and depths in the range 0–55 km. Here, we illustrate the data collection and the properties of the database in terms of recording, event and station distributions as well as macroseismic intensity points. Furthermore, we discuss the most relevant features of engineering interest showing several statistics with reference to the most significant metadata (such as moment magnitude, several distance metrics, style of faulting etc). The dataset is expected to be useful for benchmarking existing and for developing new ground motion intensity conversion equations offering a common basis, and sparing the time and effort required for assembling to the interested researchers. The dataset is available at https://zenodo.org/record/4623732#.YNX-AZMzbdc.
References
Akkar, S., Çagnan, Z., Yenier, E., Erdogan, Ö., Sandikkaya, M. A., and Gülkan, P. (2010). The recently compiled Turkish strong motion database: Preliminary investigation for seismological parameters, Journal of Seismology, 14, 457–479.
Albarello, D. and D’Amico, V. (2004). Attenuation relationship of macroseismic intensity in Italy for probabilistic seismic hazard assessment, Bollettino di Geofisica Teorica e Applicata, 45, 271–284.
Albini, P., Musson, R. M., Rovida, A., Locati, M., Gomez-Capera, A. A., and Viganò, D. (2014). The global earthquake history, Earthquake spectra, 30, 607–624.
Allen, T. I. and Wald, D. J. a. (2009). Evaluation of ground-motion modeling techniques for use in global ShakeMap: a critique of instrumental ground motion prediction equations, peak ground motion to macroseismic intensity conversions, and macroseismic intensity predictions in different tectonic settings, Open-File Report 2009-1047, U.S. Geological Survey.
Arango, M. C., Strasser, F. O., Bommer, J. J., Boroschek, R., Comte, D., and Tavera, H. (2011a) A strong- motion database from the Peru–Chile subduction zone, Journal of seismology, 15, 19–41.
Arango, M. C., Strasser, F. O., Bommer, J. J., Hernández, D. A., and Cepeda, J. M. (2011b). A strong-motion database from the Central American subduction zone, Journal of seismology, 15, 261–294.
Bossu, R., Landès, M., Roussel, F., Steed, R., Mazet-Roux, G., Martin, S. S., and Hough, S. (2017). Thumbnail-based questionnaires for the rapid and efficient collection of macroseismic data from global earthquakes, Seismological Research Letters, 88, 72–81.
Caprio, M., Tarigan, B., Worden, C. B., Wiemer, S., and Wald, D. J. (2015). Ground motion to intensity conversion equations (GMICEs): A global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America, 105, 1476–1490.
CEN: Eurocode 8. (2004). Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings, Brussels: European Committee for Standardization, Brussels, Belgium, Directive 98/34/EC, Directive 2004/18/EC.
Chiou, B., Darragh, R., Gregor, N., and Silva, W. (2008). NGA project strong-motion database, Earthquake Spectra, 24, 23–44.
Codermatz, R., Nicolich, R. and Slejko, D. (2003). Seismic risk assessments and gis technology:applications to infrastructures in the friuli–venezia giulia region(neitaly). Earthquake engineering & structural dynamics, 32, 1677–1690.
D’Amico, V. and Albarello, D. (2008). SASHA: A computer program to assess seismic hazard from intensity data, Seismological Research Letters, 79, 663-671.
Decanini, L., Gavarini, C., and Mollaioli, F. (1995). Proposta di definizione delle relazioni tra intensità macrosismica e parametri del moto del suolo, in: Atti del 7o Convegno Nazionale l’Ingegneria Sismica in Italia, vol. 1, pp. 63–72.
Faenza, L. and Michelini, A. (2010). Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap, Geophysical Journal International, 180, 1138–1152.
Faenza, L. and Michelini, A. (2011). Regression analysis of MCS intensity and ground motion spectral accelerations (SAs) in Italy, Geophysical Journal International, 186, 1415–1430.
Galli, P., Castenetto, S., and Peronace, E. (2017). The macroseismic intensity distribution of the 30 October 2016 earthquake in central Italy (Mw 6.6): Seismotectonic implications, Tectonics, 36, 2179–2191.
Gasparini C., Conte S., Vannucci C. (ed), (2011). Bollettino macrosismico 2001-2005. Istituto Nazionale di Geofisica e Vulcanologia, Roma. CD-ROM.
Gomez-Capera, A. A., D’Amico, M., Lanzano, G., Locati, M., and Santulin, M. (2020). Relationships between ground motion parameters and macroseismic intensity for Italy, Bulletin of Earthquake Engineering, pp. 1–22.
Grünthal, G. (1998). European macroseismic scale 1998, Tech. rep., European Seismological Commission (ESC).
Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., and Valensise, G. (2007). Catalogue of Strong Earthquakes in Italy (461 BC- 1997) and Mediterranean Area (760 BC-1500), INGV-SGA.
Lanzano, G., Puglia, R., Russo, E., Luzi, L., Bindi, D., Cotton, F., D’Amico, M., Felicetta, C., Pacor, F., and WG5, O. (2018). ESM strong-motion flat-file 2018, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), Observatories and Research Facilities for European Seismology (ORFEUS).
Lanzano, G., Sgobba, S., Luzi, L., Puglia, R., Pacor, F., Felicetta, C., D’Amico, M., Cotton, F., and Bindi, D. (2019). The pan-European Engineering Strong Motion (ESM) flatfile: compilation criteria and data statistics, Bulletin of Earthquake Engineering, 17, 561–582.
Lesueur, C., Cara, M., Scotti, O., Schlupp, A., and Sira, C. (2013). Linking ground motion measurements and macroseismic observations in France: a case study based on accelerometric and macroseismic databases, Journal of seismology, 17, 313–333.
Locati, M., Rovida, A., Albini, P., and Stucchi, M. (2014). The AHEAD portal: a gateway to European historical earthquake data, Seismological Research Letters, 85, 727–734.
Locati, M., Gomez-Capera, A. A. G., Puglia, R., and Santulin, M. (2017). Rosetta, a tool for linking accelerometric recordings and macroseismic observations: description and applications, Bulletin of Earthquake Engineering, 15, 2429–2443.
Locati, M., Camassi, R. D., Rovida, A. N., Ercolani, E., Bernardini, F. M. A., Castelli, V., Caracciolo, C. H., Tertulliani, A., Rossi, A., Azzaro, R., et al. (2019). Database Macrosismico Italiano DBMI15, versione 2.0, Istituto Nazionale di Geofisica e Vulcanologia.
Locati, M., Camassi, R. D., Rovida, A. N., Ercolani, E., Bernardini, F. M. A., Castelli, V., Caracciolo, C. H., Tertulliani, A., Rossi, A., Azzaro, R., et al. (2021). Database Macrosismico Italiano DBMI15, versione 3.0, Istituto Nazionale di Geofisica e Vulcanologia.
Lolli, B., Randazzo, D., Vannucci, G., and Gasperini, P. (2020). The Homogenized Instrumental Seismic Catalog (HORUS) of Italy from 1960 to Present, Seismological Society of America, 91, 3208–3222.
Magri, L., Mucciarelli, M. and Albarello, D. (1994). Estimates of site seismicity rates using ill-defined macroseismic data, Pure and Applied Geophysics, 143, 618-632.
Margottini, C., Molin, D., and Serva, L. (1992). Intensity versus ground motion: a new approach using Italian data, Engineering Geology, 33, 45–58.
Masi, A., Chiauzzi, L., Nicodemo, G., and Manfredi, V. (2020). Correlations between macroseismic intensity estimations and ground motion mea- sures of seismic events, Bulletin of Earthquake Engineering, 18, 1899– 1932.
Michelini, A., Faenza, L., Lanzano, G., Lauciani, V., Jozinović, D., Puglia, R., and Luzi, L. (2020). The new ShakeMap in Italy: progress and advances in the last 10 Yr, Seismological Research Letters, 91, 317–333.
Molin, D. (1995). Considerations on the assessment of macroseismic intensity. Annals of geophysics, 38, 5– 6.
Musson, R. M., Grünthal, G., and Stucchi, M. (2010). The comparison of macroseismic intensity scales, Journal of Seismology, 14, 413–428.
Oliveti, I., Michelini, A., and Faenza, L. (2021). INGe: Intensity-ground motion dataset for Italy", https://doi.org/10.13127/inge.2 .
Pacor, F., Paolucci, R., Ameri, G., Massa, M., and Puglia, R. (2011) Italian strong motion records in ITACA: Overview and record processing, Bulletin of Earthquake Engineering, 9, 1741–1759.
Pasolini, C., Albarello, D., Gasperini, P., D’Amico, V. and Lolli, B. (2008). The attenuation of seismic intensity in Italy, Part II: Modeling and validation, Bulletin of the Seismological Society of America, 98, 692-708.
Puglia, R., Russo, E., Luzi, L., D’Amico, M., Felicetta, C., Pacor, F., and Lanzano, G. (2018). Strong-motion processing service: A tool to access and analyse earthquakes strong-motion waveforms, Bulletin of Earthquake Engineering, 16, 2641–2651.
Quitoriano, V. and Wald, D. J. (2020) USGS “Did You Feel It?”—Science and Lessons From 20 Years of Citizen Science-Based Macroseismology, The Power of Citizen Seismology: Science and Social Impacts.
Richter, C. F. (1958). Elementary Seismology, WH Freeman and Company, San Francisco, pp. 136–139.
Ripperger, J., K ̈astli, P., F ̈ah, D., and Domenico Giardini, D. (2009). Ground motion and macroseismic intensities of a seismic event related to geothermal reservoir stimulation below the city of Basel-- observations and modelling, Geophysical Journal International, 179, 1757–1771.
Rovida, A. N., Locati, M., Camassi, R. D., Lolli, B., Gasperini, P., and Antonucci, A. (2021). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 3.0., Istituto Nazionale di Geofisica e Vulcanologia (INGV).
Schlupp, A. and Grunberg, M. (2018). ShakeMap based on instrumental and macroseismic data in France: Feedbacks on modified V3.5 and expectation on V4, in: Seismology of the Americas Meeting, Latin American and Caribbean Seismological Commission Seismological Society of America, Miami, Florida.
Sieberg, A. (1930). Scala MCS (Mercalli-Cancani-Sieberg), Geologie der Erdbeben, Handbuch der Geophysik, 2, 552–555.
Sokolov, V. Y., Wenzel, F., and Mohindra, R. (2009). Probabilistic seismic hazard assessment for Romania and sensitivity analysis: a case of joint consideration of intermediate-depth (Vrancea) and shallow (crustal) seismicity, Soil Dynamics and Earthquake Engineering, 29, 364–381.
Stucchi, M., Camassi, R., Rovida, A., Locati, M., Ercolani, E., Meletti, C., Migliavacca, P., Bernardini, F., and Azzaro, R. (2007). DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04, Quaderni di Geofisica.
Theodoulidis, N., Morfidis, K., Konstantinidou, K., Margaris, B., and Papaioannou, C. (2019). ShakeMaps and rapid earthquake damage assessment in Greece, in: Proceedings of the 2nd international conference on natural hazards and infrastructure, Chania, Greece, pp. 23–26.
Tosi, P., De Rubeis, V., Sbarra, P., and Sorrentino, D. (2007). Hai Sentito Il Terremoto (HSIT).Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/HSIT.
Wald, D. J. and Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification, Bulletin of the Seismological Society of America, 97, 1379–1395.
Wald, D. J., Quitoriano, V., Heaton, T. H., and Kanamori, H. (1999a). Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California, Earthquake spectra, 15, 557–564.
Wald, D. J., Quitoriano, V., Heaton, T. H., Kanamori, H., Scrivner, C. W., and Worden, C. B. (1999b). TriNet “ShakeMaps”: Rapid generation of peak ground motion and intensity maps for earthquakes in southern California, Earthquake Spectra, 15, 537–555.
Wood, H. O. and Neumann, F. (1931). Modified Mercalli intensity scale of 1931, Bulletin of the Seismological Society of America, 21, 277–283.
Worden, C., Wald, D., Allen, T., Lin, K., Garcia, D., and Cua, G. (2010). A revised ground-motion and intensity interpolation scheme for ShakeMap, Bulletin of the Seismological Society of America, 100, 3083– 3096.
Worden, C., Gerstenberger, M., Rhoades, D., and Wald, D. (2012). Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California, Bulletin of the Seismological Society of America, 102, 204–221.
Worden, C. B., Thompson, E. M., Hearne, M., and Wald, D. J. (2020). ShakeMap Manual Online: technical manual, user’s guide, and software guide, U. S. Geological Survey.
Zanini, M. A., Hofer, L., and Faleschini, F. (2019). Reversible ground motion-to-intensity conversion equations based on the EMS-98 scale, Engi- neering Structures, 180, 310–320.
Albarello, D. and D’Amico, V. (2004). Attenuation relationship of macroseismic intensity in Italy for probabilistic seismic hazard assessment, Bollettino di Geofisica Teorica e Applicata, 45, 271–284.
Albini, P., Musson, R. M., Rovida, A., Locati, M., Gomez-Capera, A. A., and Viganò, D. (2014). The global earthquake history, Earthquake spectra, 30, 607–624.
Allen, T. I. and Wald, D. J. a. (2009). Evaluation of ground-motion modeling techniques for use in global ShakeMap: a critique of instrumental ground motion prediction equations, peak ground motion to macroseismic intensity conversions, and macroseismic intensity predictions in different tectonic settings, Open-File Report 2009-1047, U.S. Geological Survey.
Arango, M. C., Strasser, F. O., Bommer, J. J., Boroschek, R., Comte, D., and Tavera, H. (2011a) A strong- motion database from the Peru–Chile subduction zone, Journal of seismology, 15, 19–41.
Arango, M. C., Strasser, F. O., Bommer, J. J., Hernández, D. A., and Cepeda, J. M. (2011b). A strong-motion database from the Central American subduction zone, Journal of seismology, 15, 261–294.
Bossu, R., Landès, M., Roussel, F., Steed, R., Mazet-Roux, G., Martin, S. S., and Hough, S. (2017). Thumbnail-based questionnaires for the rapid and efficient collection of macroseismic data from global earthquakes, Seismological Research Letters, 88, 72–81.
Caprio, M., Tarigan, B., Worden, C. B., Wiemer, S., and Wald, D. J. (2015). Ground motion to intensity conversion equations (GMICEs): A global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America, 105, 1476–1490.
CEN: Eurocode 8. (2004). Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings, Brussels: European Committee for Standardization, Brussels, Belgium, Directive 98/34/EC, Directive 2004/18/EC.
Chiou, B., Darragh, R., Gregor, N., and Silva, W. (2008). NGA project strong-motion database, Earthquake Spectra, 24, 23–44.
Codermatz, R., Nicolich, R. and Slejko, D. (2003). Seismic risk assessments and gis technology:applications to infrastructures in the friuli–venezia giulia region(neitaly). Earthquake engineering & structural dynamics, 32, 1677–1690.
D’Amico, V. and Albarello, D. (2008). SASHA: A computer program to assess seismic hazard from intensity data, Seismological Research Letters, 79, 663-671.
Decanini, L., Gavarini, C., and Mollaioli, F. (1995). Proposta di definizione delle relazioni tra intensità macrosismica e parametri del moto del suolo, in: Atti del 7o Convegno Nazionale l’Ingegneria Sismica in Italia, vol. 1, pp. 63–72.
Faenza, L. and Michelini, A. (2010). Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap, Geophysical Journal International, 180, 1138–1152.
Faenza, L. and Michelini, A. (2011). Regression analysis of MCS intensity and ground motion spectral accelerations (SAs) in Italy, Geophysical Journal International, 186, 1415–1430.
Galli, P., Castenetto, S., and Peronace, E. (2017). The macroseismic intensity distribution of the 30 October 2016 earthquake in central Italy (Mw 6.6): Seismotectonic implications, Tectonics, 36, 2179–2191.
Gasparini C., Conte S., Vannucci C. (ed), (2011). Bollettino macrosismico 2001-2005. Istituto Nazionale di Geofisica e Vulcanologia, Roma. CD-ROM.
Gomez-Capera, A. A., D’Amico, M., Lanzano, G., Locati, M., and Santulin, M. (2020). Relationships between ground motion parameters and macroseismic intensity for Italy, Bulletin of Earthquake Engineering, pp. 1–22.
Grünthal, G. (1998). European macroseismic scale 1998, Tech. rep., European Seismological Commission (ESC).
Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., and Valensise, G. (2007). Catalogue of Strong Earthquakes in Italy (461 BC- 1997) and Mediterranean Area (760 BC-1500), INGV-SGA.
Lanzano, G., Puglia, R., Russo, E., Luzi, L., Bindi, D., Cotton, F., D’Amico, M., Felicetta, C., Pacor, F., and WG5, O. (2018). ESM strong-motion flat-file 2018, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), Observatories and Research Facilities for European Seismology (ORFEUS).
Lanzano, G., Sgobba, S., Luzi, L., Puglia, R., Pacor, F., Felicetta, C., D’Amico, M., Cotton, F., and Bindi, D. (2019). The pan-European Engineering Strong Motion (ESM) flatfile: compilation criteria and data statistics, Bulletin of Earthquake Engineering, 17, 561–582.
Lesueur, C., Cara, M., Scotti, O., Schlupp, A., and Sira, C. (2013). Linking ground motion measurements and macroseismic observations in France: a case study based on accelerometric and macroseismic databases, Journal of seismology, 17, 313–333.
Locati, M., Rovida, A., Albini, P., and Stucchi, M. (2014). The AHEAD portal: a gateway to European historical earthquake data, Seismological Research Letters, 85, 727–734.
Locati, M., Gomez-Capera, A. A. G., Puglia, R., and Santulin, M. (2017). Rosetta, a tool for linking accelerometric recordings and macroseismic observations: description and applications, Bulletin of Earthquake Engineering, 15, 2429–2443.
Locati, M., Camassi, R. D., Rovida, A. N., Ercolani, E., Bernardini, F. M. A., Castelli, V., Caracciolo, C. H., Tertulliani, A., Rossi, A., Azzaro, R., et al. (2019). Database Macrosismico Italiano DBMI15, versione 2.0, Istituto Nazionale di Geofisica e Vulcanologia.
Locati, M., Camassi, R. D., Rovida, A. N., Ercolani, E., Bernardini, F. M. A., Castelli, V., Caracciolo, C. H., Tertulliani, A., Rossi, A., Azzaro, R., et al. (2021). Database Macrosismico Italiano DBMI15, versione 3.0, Istituto Nazionale di Geofisica e Vulcanologia.
Lolli, B., Randazzo, D., Vannucci, G., and Gasperini, P. (2020). The Homogenized Instrumental Seismic Catalog (HORUS) of Italy from 1960 to Present, Seismological Society of America, 91, 3208–3222.
Magri, L., Mucciarelli, M. and Albarello, D. (1994). Estimates of site seismicity rates using ill-defined macroseismic data, Pure and Applied Geophysics, 143, 618-632.
Margottini, C., Molin, D., and Serva, L. (1992). Intensity versus ground motion: a new approach using Italian data, Engineering Geology, 33, 45–58.
Masi, A., Chiauzzi, L., Nicodemo, G., and Manfredi, V. (2020). Correlations between macroseismic intensity estimations and ground motion mea- sures of seismic events, Bulletin of Earthquake Engineering, 18, 1899– 1932.
Michelini, A., Faenza, L., Lanzano, G., Lauciani, V., Jozinović, D., Puglia, R., and Luzi, L. (2020). The new ShakeMap in Italy: progress and advances in the last 10 Yr, Seismological Research Letters, 91, 317–333.
Molin, D. (1995). Considerations on the assessment of macroseismic intensity. Annals of geophysics, 38, 5– 6.
Musson, R. M., Grünthal, G., and Stucchi, M. (2010). The comparison of macroseismic intensity scales, Journal of Seismology, 14, 413–428.
Oliveti, I., Michelini, A., and Faenza, L. (2021). INGe: Intensity-ground motion dataset for Italy", https://doi.org/10.13127/inge.2 .
Pacor, F., Paolucci, R., Ameri, G., Massa, M., and Puglia, R. (2011) Italian strong motion records in ITACA: Overview and record processing, Bulletin of Earthquake Engineering, 9, 1741–1759.
Pasolini, C., Albarello, D., Gasperini, P., D’Amico, V. and Lolli, B. (2008). The attenuation of seismic intensity in Italy, Part II: Modeling and validation, Bulletin of the Seismological Society of America, 98, 692-708.
Puglia, R., Russo, E., Luzi, L., D’Amico, M., Felicetta, C., Pacor, F., and Lanzano, G. (2018). Strong-motion processing service: A tool to access and analyse earthquakes strong-motion waveforms, Bulletin of Earthquake Engineering, 16, 2641–2651.
Quitoriano, V. and Wald, D. J. (2020) USGS “Did You Feel It?”—Science and Lessons From 20 Years of Citizen Science-Based Macroseismology, The Power of Citizen Seismology: Science and Social Impacts.
Richter, C. F. (1958). Elementary Seismology, WH Freeman and Company, San Francisco, pp. 136–139.
Ripperger, J., K ̈astli, P., F ̈ah, D., and Domenico Giardini, D. (2009). Ground motion and macroseismic intensities of a seismic event related to geothermal reservoir stimulation below the city of Basel-- observations and modelling, Geophysical Journal International, 179, 1757–1771.
Rovida, A. N., Locati, M., Camassi, R. D., Lolli, B., Gasperini, P., and Antonucci, A. (2021). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 3.0., Istituto Nazionale di Geofisica e Vulcanologia (INGV).
Schlupp, A. and Grunberg, M. (2018). ShakeMap based on instrumental and macroseismic data in France: Feedbacks on modified V3.5 and expectation on V4, in: Seismology of the Americas Meeting, Latin American and Caribbean Seismological Commission Seismological Society of America, Miami, Florida.
Sieberg, A. (1930). Scala MCS (Mercalli-Cancani-Sieberg), Geologie der Erdbeben, Handbuch der Geophysik, 2, 552–555.
Sokolov, V. Y., Wenzel, F., and Mohindra, R. (2009). Probabilistic seismic hazard assessment for Romania and sensitivity analysis: a case of joint consideration of intermediate-depth (Vrancea) and shallow (crustal) seismicity, Soil Dynamics and Earthquake Engineering, 29, 364–381.
Stucchi, M., Camassi, R., Rovida, A., Locati, M., Ercolani, E., Meletti, C., Migliavacca, P., Bernardini, F., and Azzaro, R. (2007). DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04, Quaderni di Geofisica.
Theodoulidis, N., Morfidis, K., Konstantinidou, K., Margaris, B., and Papaioannou, C. (2019). ShakeMaps and rapid earthquake damage assessment in Greece, in: Proceedings of the 2nd international conference on natural hazards and infrastructure, Chania, Greece, pp. 23–26.
Tosi, P., De Rubeis, V., Sbarra, P., and Sorrentino, D. (2007). Hai Sentito Il Terremoto (HSIT).Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/HSIT.
Wald, D. J. and Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification, Bulletin of the Seismological Society of America, 97, 1379–1395.
Wald, D. J., Quitoriano, V., Heaton, T. H., and Kanamori, H. (1999a). Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California, Earthquake spectra, 15, 557–564.
Wald, D. J., Quitoriano, V., Heaton, T. H., Kanamori, H., Scrivner, C. W., and Worden, C. B. (1999b). TriNet “ShakeMaps”: Rapid generation of peak ground motion and intensity maps for earthquakes in southern California, Earthquake Spectra, 15, 537–555.
Wood, H. O. and Neumann, F. (1931). Modified Mercalli intensity scale of 1931, Bulletin of the Seismological Society of America, 21, 277–283.
Worden, C., Wald, D., Allen, T., Lin, K., Garcia, D., and Cua, G. (2010). A revised ground-motion and intensity interpolation scheme for ShakeMap, Bulletin of the Seismological Society of America, 100, 3083– 3096.
Worden, C., Gerstenberger, M., Rhoades, D., and Wald, D. (2012). Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California, Bulletin of the Seismological Society of America, 102, 204–221.
Worden, C. B., Thompson, E. M., Hearne, M., and Wald, D. J. (2020). ShakeMap Manual Online: technical manual, user’s guide, and software guide, U. S. Geological Survey.
Zanini, M. A., Hofer, L., and Faleschini, F. (2019). Reversible ground motion-to-intensity conversion equations based on the EMS-98 scale, Engi- neering Structures, 180, 310–320.
Type
article
File(s)
Loading...
Name
8709-Article Text-28535-1-10-20220324.pdf
Description
Open Access published article
Size
3.91 MB
Format
Adobe PDF
Checksum (MD5)
c91943c9b6a4e089ae0ad16b761d6844