Options
Mapping of the b value anomalies beneath Mt. Etna, Italy, during July–August 2001 lateral eruption
Author(s)
Language
English
Obiettivo Specifico
5V. Processi eruttivi e post-eruttivi
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/32 (2005)
Pages (printed)
L05309
Issued date
March 12, 2005
Keywords
Abstract
The pattern of b value of the frequency-magnitude
relation, or mean magnitude, has been analyzed as function
of space beneath Mt. Etna during the intense lateral eruption
of July–August 2001. The data used (August 1999–August
2001), subdivided in the pre-eruptive and eruption period,
show significant space variations in the b value. For each of
the two periods, a volume of anomalously high b value can
be observed in the southeastern flank of the volcano. The
anomalies located at 3 ± 1 km (b = 1.84 ± 0.20), and at
about 1 ± 1 km (b = 2.11 ± 0.29) depth are interpreted as
two different steps of a magma migration process ended
with the July–August 2001 eruption. All the available
geophysical evidences such as geodetic deformation
measurements, focal mechanism and tomographic studies
support this interpretation
relation, or mean magnitude, has been analyzed as function
of space beneath Mt. Etna during the intense lateral eruption
of July–August 2001. The data used (August 1999–August
2001), subdivided in the pre-eruptive and eruption period,
show significant space variations in the b value. For each of
the two periods, a volume of anomalously high b value can
be observed in the southeastern flank of the volcano. The
anomalies located at 3 ± 1 km (b = 1.84 ± 0.20), and at
about 1 ± 1 km (b = 2.11 ± 0.29) depth are interpreted as
two different steps of a magma migration process ended
with the July–August 2001 eruption. All the available
geophysical evidences such as geodetic deformation
measurements, focal mechanism and tomographic studies
support this interpretation
References
Aki, K. (1965), Maximum likelihood estimate of b in the formula log N =
a b M and its confidence limits, Bull. Earthquake Res. Inst. Univ.
Tokyo, 43, 237– 239.
Behncke, B., and M. Neri (2003), The July –August 2001 eruption of
Mt. Etna (Sicily), Bull. Volcanol, 65, 461– 476, doi:10.1007/s00445-
003-0274-1.
Bender, B. (1983), Maximum likelihood estimation of b values for
magnitude grouped data, Bull. Seismol. Soc. Am., 73, 831– 851.
Bonaccorso, A., and D. Patane` (2001), Shear response to an intrusive
episode at Mt. Etna volcano (January 1998) inferred through seismic
and tilt data, Tectonophysics, 334, 61–75.
Bonaccorso, A., M. Aloisi, and M. Mattia (2002), Dike emplacement forerunning
the Etna July 2001 eruption modeled through continuous tilt
and GPS data, Geophys. Res. Lett., 29(13), 1624, doi:10.1029/
2001GL014397.
Bonaccorso, A., S. D’Amico, M. Mattia, and D. Patane` (2004), Intrusive
mechanism at Mt. Etna forerunning the July–August 2001 eruption from
seismic and ground deformation data, Pure Appl. Geophys., 161, 1469–
1487, doi:10.1007/s00024-004-2515-4.
Caracausi, A., R. Favara, S. Giammanco, F. Italiano, A. Paonita,
G. Pecoraino, A. Rizzo, and P. M. Nuccio (2003), Mt. Etna: Geochemical
signals of magma ascent and unusually extensive plumbing system,
Geophys. Res. Lett., 30(2), 1057, doi:10.1029/2002GL015463.
Chiarabba, C., P. De Gori, and D. Patane` (2004), The Mt. Etna plumbing
system: The contribution of Seismic tomography, in Mt. Etna: Volcano
Laboratory, Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et
al., pp. 191– 204, AGU, Washington, D. C.
Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in
California, Bull. Seismol. Soc. Am., 34, 185–188.
Ishimoto, M., and K. Iida (1939), Observations of earthquakes registered
with the microseismograph constructed recently, Bull. Earthquake Res.
Inst. Tokyo Univ., 17, 443– 478.
Mogi, K. (1962), Magnitude-frequency relation for elastic shocks accompanying
fracture of various materials and some related problems in earthquakes,
Bull. Earthquake Res. Inst. Univ. Tokyo, 40, 831–853.
Murru, M., C. Montuori, M. Wyss, and E. Privitera (1999), The locations of
magma chambers at Mt. Etna, Italy, mapped by b values, Geophys. Res.
Lett., 26, 2553–2556.
Musumeci, C., O. Cocina, P. De Gori, and D. Patane` (2004), Seismological
evidence of stress induced by dike injection during the 2001 Mt. Etna
eruption, Geophys. Res. Lett., 31, L07617, doi:10.1029/2003GL019367.
Patane`, D., C. Chiarabba, O. Cocina, P. De Gori, M. Moretti, and E. Boschi
(2002), Tomographic images and 3D earthquake locations of the seismic
swarm preceding the 2001 Mt. Etna eruption: Evidence for a dike intrusion,
Geophys. Res. Lett., 29(10), 1497, doi:10.1029/2001GL014391.
Patane`, D., P. De Gori, C. Chiarabba, and A. Bonaccorso (2003), Magma
ascent and the pressurization of Mt. Etna’s volcanic system, Science, 299,
2061– 2063.
Scholz, C. H. (1968), The frequency-magnitude relation of micro fracturing
in rock and its relation to earthquakes, Bull. Seismol. Soc. Am., 58, 339–
415.
Schorlemmer, D., G. Neri, S. Wiemer, and A. Mostaccio (2003), Stability
and significance tests for b-value anomalies: Example from the Tyrrhenian
Sea, Geophys. Res. Lett., 30(16), 1835, doi:10.1029/2003GL017335.
Shi, Y., and B. Bolt (1982), The standard error of the magnitude frequency
b value, Bull. Seismol. Soc. Am., 72, 1677– 1687.
Tanguy, J. C., M. Condomines, and G. Kieffer (1997), Evolution of the
Mt. Etna magma: Constraints on the present feeding system and eruptive
mechanism, J. Volcanol. Geotherm. Res., 75, 221– 250.
Utsu, T. (1965), A method for determining the value of b in a formula log
n = a bm showing the magnitude frequency for earthquakes, Geophys.
Bull. Hokkaido Univ., 13, 99– 103.
Utsu, T. (1992), On seismicity, in Mathematical Seismology (VII), Coop.
Res. Rep. 34, pp. 139– 157, Inst. for Stat. Math., Tokyo.
Warren, N. W., and G. V. Latham (1970), An experimental study of thermally
induced microfracturing and its relation to volcanic seismicity,
J. Geophys. Res., 75, 4455– 4464.
Wiemer, S., and S. R. McNutt (1997), Variations in the frequency-magnitude
distribution with depth in two volcanic areas: Mt. St. Helens,Washington,
and Mt. Spurr, Alaska, Geophys. Res. Lett., 24, 189– 192.
Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in
earthquake catalogs: Examples from Alaska, the western United States,
and Japan, Bull. Seismol. Soc. Am., 90, 859–869.
Wiemer, S., and M. Wyss (2002), Mapping spatial variability of the
frequency-magnitude distribution of earthquakes, Adv. Geophys., 45,
259– 302.
Wiemer, S., S. R. McNutt, and M. Wyss (1998), Temporal and threedimensional
spatial analyses of the frequency-magnitude distribution near
Long Valley Caldera, California, Geophys. J. Int., 134, 409– 421.
Wyss, M., K. Shimazaki, and S. Wiemer (1997), Mapping active magma
chambers by b values beneath the off-Ito volcano, Japan, J. Geophys.
Res., 102, 20,413– 20,422.
a b M and its confidence limits, Bull. Earthquake Res. Inst. Univ.
Tokyo, 43, 237– 239.
Behncke, B., and M. Neri (2003), The July –August 2001 eruption of
Mt. Etna (Sicily), Bull. Volcanol, 65, 461– 476, doi:10.1007/s00445-
003-0274-1.
Bender, B. (1983), Maximum likelihood estimation of b values for
magnitude grouped data, Bull. Seismol. Soc. Am., 73, 831– 851.
Bonaccorso, A., and D. Patane` (2001), Shear response to an intrusive
episode at Mt. Etna volcano (January 1998) inferred through seismic
and tilt data, Tectonophysics, 334, 61–75.
Bonaccorso, A., M. Aloisi, and M. Mattia (2002), Dike emplacement forerunning
the Etna July 2001 eruption modeled through continuous tilt
and GPS data, Geophys. Res. Lett., 29(13), 1624, doi:10.1029/
2001GL014397.
Bonaccorso, A., S. D’Amico, M. Mattia, and D. Patane` (2004), Intrusive
mechanism at Mt. Etna forerunning the July–August 2001 eruption from
seismic and ground deformation data, Pure Appl. Geophys., 161, 1469–
1487, doi:10.1007/s00024-004-2515-4.
Caracausi, A., R. Favara, S. Giammanco, F. Italiano, A. Paonita,
G. Pecoraino, A. Rizzo, and P. M. Nuccio (2003), Mt. Etna: Geochemical
signals of magma ascent and unusually extensive plumbing system,
Geophys. Res. Lett., 30(2), 1057, doi:10.1029/2002GL015463.
Chiarabba, C., P. De Gori, and D. Patane` (2004), The Mt. Etna plumbing
system: The contribution of Seismic tomography, in Mt. Etna: Volcano
Laboratory, Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et
al., pp. 191– 204, AGU, Washington, D. C.
Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in
California, Bull. Seismol. Soc. Am., 34, 185–188.
Ishimoto, M., and K. Iida (1939), Observations of earthquakes registered
with the microseismograph constructed recently, Bull. Earthquake Res.
Inst. Tokyo Univ., 17, 443– 478.
Mogi, K. (1962), Magnitude-frequency relation for elastic shocks accompanying
fracture of various materials and some related problems in earthquakes,
Bull. Earthquake Res. Inst. Univ. Tokyo, 40, 831–853.
Murru, M., C. Montuori, M. Wyss, and E. Privitera (1999), The locations of
magma chambers at Mt. Etna, Italy, mapped by b values, Geophys. Res.
Lett., 26, 2553–2556.
Musumeci, C., O. Cocina, P. De Gori, and D. Patane` (2004), Seismological
evidence of stress induced by dike injection during the 2001 Mt. Etna
eruption, Geophys. Res. Lett., 31, L07617, doi:10.1029/2003GL019367.
Patane`, D., C. Chiarabba, O. Cocina, P. De Gori, M. Moretti, and E. Boschi
(2002), Tomographic images and 3D earthquake locations of the seismic
swarm preceding the 2001 Mt. Etna eruption: Evidence for a dike intrusion,
Geophys. Res. Lett., 29(10), 1497, doi:10.1029/2001GL014391.
Patane`, D., P. De Gori, C. Chiarabba, and A. Bonaccorso (2003), Magma
ascent and the pressurization of Mt. Etna’s volcanic system, Science, 299,
2061– 2063.
Scholz, C. H. (1968), The frequency-magnitude relation of micro fracturing
in rock and its relation to earthquakes, Bull. Seismol. Soc. Am., 58, 339–
415.
Schorlemmer, D., G. Neri, S. Wiemer, and A. Mostaccio (2003), Stability
and significance tests for b-value anomalies: Example from the Tyrrhenian
Sea, Geophys. Res. Lett., 30(16), 1835, doi:10.1029/2003GL017335.
Shi, Y., and B. Bolt (1982), The standard error of the magnitude frequency
b value, Bull. Seismol. Soc. Am., 72, 1677– 1687.
Tanguy, J. C., M. Condomines, and G. Kieffer (1997), Evolution of the
Mt. Etna magma: Constraints on the present feeding system and eruptive
mechanism, J. Volcanol. Geotherm. Res., 75, 221– 250.
Utsu, T. (1965), A method for determining the value of b in a formula log
n = a bm showing the magnitude frequency for earthquakes, Geophys.
Bull. Hokkaido Univ., 13, 99– 103.
Utsu, T. (1992), On seismicity, in Mathematical Seismology (VII), Coop.
Res. Rep. 34, pp. 139– 157, Inst. for Stat. Math., Tokyo.
Warren, N. W., and G. V. Latham (1970), An experimental study of thermally
induced microfracturing and its relation to volcanic seismicity,
J. Geophys. Res., 75, 4455– 4464.
Wiemer, S., and S. R. McNutt (1997), Variations in the frequency-magnitude
distribution with depth in two volcanic areas: Mt. St. Helens,Washington,
and Mt. Spurr, Alaska, Geophys. Res. Lett., 24, 189– 192.
Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in
earthquake catalogs: Examples from Alaska, the western United States,
and Japan, Bull. Seismol. Soc. Am., 90, 859–869.
Wiemer, S., and M. Wyss (2002), Mapping spatial variability of the
frequency-magnitude distribution of earthquakes, Adv. Geophys., 45,
259– 302.
Wiemer, S., S. R. McNutt, and M. Wyss (1998), Temporal and threedimensional
spatial analyses of the frequency-magnitude distribution near
Long Valley Caldera, California, Geophys. J. Int., 134, 409– 421.
Wyss, M., K. Shimazaki, and S. Wiemer (1997), Mapping active magma
chambers by b values beneath the off-Ito volcano, Japan, J. Geophys.
Res., 102, 20,413– 20,422.
Description
the spatial variations of the b value
in the area studied are real circumstances, linked to the
magmatic processes ongoing in that period of time and
leading to the eruptive phenomena. Our detailed b value
tomography appears to be a good example in which an
intrusion activity may be also documented by increased
b values. Our analysis demonstrates clearly that the
parameter b is a sensitive and accurate indicator of the
magmatic processes that occurred during the investigation
period at Etna volcano. In summary, the anomalies observed
during the two period analyzed (August 1999–June 2001
and July–August 2001) appear to be the result of a
fundamental process connected to the magma ascending,
ending with a high velocity vertical dike emplacement,
which heralded to the July–August 2001 eruption.
in the area studied are real circumstances, linked to the
magmatic processes ongoing in that period of time and
leading to the eruptive phenomena. Our detailed b value
tomography appears to be a good example in which an
intrusion activity may be also documented by increased
b values. Our analysis demonstrates clearly that the
parameter b is a sensitive and accurate indicator of the
magmatic processes that occurred during the investigation
period at Etna volcano. In summary, the anomalies observed
during the two period analyzed (August 1999–June 2001
and July–August 2001) appear to be the result of a
fundamental process connected to the magma ascending,
ending with a high velocity vertical dike emplacement,
which heralded to the July–August 2001 eruption.
Type
article
File(s)
No Thumbnail Available
Name
2005_GRL_Murru_Montuori_Console_Lisi.pdf
Description
Manuscript
Size
177.13 KB
Format
Adobe PDF
Checksum (MD5)
fddd9bda807171533eb410ac070ef045