TINITALY/01: a new Triangular Irregular Network of Italy
Author(s)
Language
English
Obiettivo Specifico
5.4. TTC - Sistema Informativo Territoriale
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Journal
Issue/vol(year)
3/50 (2007)
Publisher
Editrice Compositori
Pages (printed)
407-425
Date Issued
June 2007
Abstract
A new Digital Elevation Model (DEM) of the natural landforms of Italy is presented. A methodology is discussed to
build a DEM over wide areas where elevation data from non-homogeneous (in density and accuracy) input sources
are available. The input elevation data include contour lines and spot heights derived from the Italian Regional topographic
maps, satellite-based global positioning system points, ground based and radar altimetry data. Owing to the
great heterogeneity of the input data density, the DEM format that better preserves the original accuracy is a Triangular
Irregular Network (TIN). A Delaunay-based TIN structure is improved by using the DEST algorithm that enhances
input data by evaluating inferred break-lines. Accordingly to this approach, biased distributions in slopes and
elevations are absent. To prevent discontinuities at the boundary between regions characterized by data with different
resolution a cubic Hermite blending weight S-shaped function is adopted. The TIN of Italy consists of 1.39×109
triangles. The average triangle area ranges from 12 to about 13000 m2 accordingly to different morphologies and different
sources. About 50% of the model has a local average triangle area <500 m2. The vertical accuracy of the obtained
DEM is evaluated by more than 200000 sparse control points. The overall Root Mean Square Error (RMSE)
is less than 3.5 m. The obtained national-scale DEM constitutes an useful support to carry out accurate geomorphological
and geological investigations over large areas. The problem of choosing the best step size in deriving a grid
from a TIN is then discussed and a method to quantify the loss of vertical information is presented as a function of
the grid step. Some examples of DEM application are outlined. Under request, an high resolution stereo image database
of the whole Italian territory (derived from the presented DEM) is available to browse via internet.
build a DEM over wide areas where elevation data from non-homogeneous (in density and accuracy) input sources
are available. The input elevation data include contour lines and spot heights derived from the Italian Regional topographic
maps, satellite-based global positioning system points, ground based and radar altimetry data. Owing to the
great heterogeneity of the input data density, the DEM format that better preserves the original accuracy is a Triangular
Irregular Network (TIN). A Delaunay-based TIN structure is improved by using the DEST algorithm that enhances
input data by evaluating inferred break-lines. Accordingly to this approach, biased distributions in slopes and
elevations are absent. To prevent discontinuities at the boundary between regions characterized by data with different
resolution a cubic Hermite blending weight S-shaped function is adopted. The TIN of Italy consists of 1.39×109
triangles. The average triangle area ranges from 12 to about 13000 m2 accordingly to different morphologies and different
sources. About 50% of the model has a local average triangle area <500 m2. The vertical accuracy of the obtained
DEM is evaluated by more than 200000 sparse control points. The overall Root Mean Square Error (RMSE)
is less than 3.5 m. The obtained national-scale DEM constitutes an useful support to carry out accurate geomorphological
and geological investigations over large areas. The problem of choosing the best step size in deriving a grid
from a TIN is then discussed and a method to quantify the loss of vertical information is presented as a function of
the grid step. Some examples of DEM application are outlined. Under request, an high resolution stereo image database
of the whole Italian territory (derived from the presented DEM) is available to browse via internet.
References
ACHILLI, V., P. BALDI, L., BARATIN, C. BOVINI, E. ERCOLANI,
S. GANDOLFI, M. ANZIDEI and F. RIGUZZI (1998): Digital
photogrammetric survey on the island of Vulcano,
Acta Vulcanol., 10, 1-5.
BAMBER, J.L., S. EKHOLM and W. KRABILL (2001): A new,
high resolution digital elevation model of Greenland
fully validated with airborne laser altimeter data, J.
Geophys. Res., 106 (B4), 6733-6745.
BISSON, M., M. FAVALLI, A. MORI, F. MAZZARINI, M.T.
PARESCHI and L. SINAPI (2003): A morphometric model
of the Aeolian Islands (Italy), Nuovo Cimento, 26 (4),
417-435.
BISSON, M., M. FAVALLI, A. FORNACIAI, F. MAZZARINI, I. ISOLA,
G. ZANCHETTA and M.T. PARESCHI (2005): A rapid
method to assess fire-related debris flow hazard in the
mediterranean region: an example from Sicily (Southern
Italy), Int. J. Appl. Earth Obs. Geoinf., 7, 217-231.
BISSON, M., M.T. PARESCHI, G. ZANCHETTA, R. SULPIZIO and
R. SANTACROCE (2007): Volcaniclastic debris flow occurrences
in the Campania Region (Southern Italy) and
their relation to Holocene-Late Pleistocene pyroclastic
fall deposits: implications for large scale hazard mapping,
Bull. Volcanol., doi: 10.1007/s00445-007-0127-4.
CARROZZO, M.T., D. LUZIO, C. MARGIOTTA, T. QUARTA, F.
ZUANNI, A. CHIRENTI and A.M. TUNDO (1985): Data
base of mean height values for the whole Italian landmass
and surrounding areas: determining and statistical
analysis, Boll. Geod. Sci. Affini, 44 (1), 38-56.
CHAPLOT, V., F. DARBOUX, H. BOURENNANE, S. LEGUÉDOIS,
N. SILVERA and K. PHACHOMPHON (2006): Accuracy of
interpolation techniques for the derivation of digital elevation
models in relation to landform types and data
density, Geomorphology, 77, 126-141.
FALORNI, G., V. TALES, E.R. VIVONI, R.L. BRAS and K.S.
AMARATUNGA (2005): Analysis and characterization of
the vertical accuracy of digital elevation models from
the Shuttle Radar Mission, J. Geophys. Res., 110,
F02005, doi: 10.1029/2003JF000113.
FARR, T.G. and M. KOBRICK (2000): Shuttle radar Topography
Mission produces a wealth of data, Eos, Trans. Am.
Geophys. Un., 81 (48), 583-585.
FAVALLI, M. and M.T. PARESCHI (2004): Digital elevation
model construction from structured topographic data:
the DEST algorithm, J. Geophys. Res., 109, F04004,
doi: 10.1029/2004JF000150.
FAVALLI, M., F. INNOCENTI, M.T. PARESCHI, G. PASCQUARÉ,
F. MAZZARINI, S. BRANCA, L. CAVARRA and A. RIBALDI
(1999): The DEM of Mt. Etna: geomorphological and
structural implications, Geodin. Acta, 12 (5), 279-290.
FAVALLI, M., M.T. PARESCHI, A. NERI and I. ISOLA (2005):
Forecasting lava flow paths by a stochastic approach,
Geophys. Res. Lett., 32, L03305, doi: 10.1029/
2004GL021718.
FAVALLI, M., G. CHIRICO, P. PAPALE, M.T. PARESCHI, M.
COLTELLI, N. LUCAYA and E. BOSCHI (2006a): Computer
simulations of lava flow paths in the town of
Goma, Nyiragongo volcano, Democratic Republic of
Congo, J. Geophys. Res., 111, B06202, doi: 10.1029/
2004JB003527.
FAVALLI, M., M.T. PARESCHI and G. ZANCHETTA (2006b):
Simulation of syn-eruptive floods in the circumvesuvian
plain (Southern Italy), Bull. Volcanol., 68, doi:
10.1007/s00445-005-0011-z, 349-362.
GALLANT, J.C., I.D. MOORE, M.F. HUTCHINSON and P.E.
GESSLER (1994): Estimating fractal dimension of profiles:
a comparison of methods, Math. Geol., 26 (4),
455-481.
GANAS A., S. PALLIDES and V. KARASTATHIS (2005): DEMbased
morphometry of range-front escarpments in Attica,
Central Greece, and its relation to fault slip rates,
Geomorphology, 65, 301-319.
GUZZETTI, F. and P. REICHENBACH (1994): Towards a definition
of topographic division of Italy, Geomorphology,
11, 57-74.
GUZZETTI, F., M. MARCHETTI and P. REICHENBACH (1997):
Large alluvional fans in the north-central Po Plain
(Northern Italy), Geomorphology, 18, 119-136.
GUZZETTI, F., A. CARRARA, M. CARDINALI and P. REICHENBACH
(1999): Landslide hazard evaluation: a review of
current techniques and their application in a multi-scale
study, Central Italy, Geomorphology, 31, 181-216.
HUTCHINSON, M.F. (1996): Australian Digital Elevation Model (<http://cres.anu.edu.au/outputs/ausdem.php> accessed
on July 2007).
KENWARD, T., D.P. LETTENMAIER, E.F. WOOD and E. FIELDING
(2000): Effects of digital elevation models accuracy
on hydrologic predictions, Remote Sensing Environ.,
74, 432-444.
KUHNI, A. and O.A. PFIFFNER (2001): The relief of the
Swiss Alps and adjacent areas and its relation to lithology
and structure: topographic analysis from a 250-m
DEM, Geomorphology, 41, 285-307.
LIU, H., K.C. JEZEK and B. LI (1999): Development of an
Antarctic digital elevation model by integrating cartographic
and remotely sensed data; a geographic information
system based approach, J. Geophys. Res., 104
(10), 23199-23213.
MACEDONIO, G. and M.T. PARESCHI (1991): An algorithm
for the triangulation of arbitrarily distributed points:
applications to volume estimate and terrain fitting,
Comput. Geosci., 17, 859-874.
MARTZ, L.W. and J. GARBRECHT (1995): Automated recognition
of valley lines and drainage networks from grid
digital elevation models: a review and a new method –
Comment, J. Hydrol., 167 (1-4), 393-396.
MASEROLI, R. (2002): Passaggio tra sistemi di riferimento
geodetici. La nuova procedura adottata dall’IGM, Boll.
Geod. Sci. Affini, 61 (2), 81-82.
MAZZARINI, F., M.T. PARESCHI, M. FAVALLI, I. ISOLA, S. TARQUINI
and E. BOSCHI (2005): Morphology of basaltic lava
channels during the Mt. Etna September 2004 eruption
from airborne laser altimeter data, Geophys. Res.
Lett., 32, L04305, doi: 10.1029/ 2004GL021815.
MOORE, I.D., R.B. GRAYSON and A.R. LADSON (1991): Digital
terrain modelling: a review of hydrological, geomorphological
and biological applications, Hydrol.
Processes, 5, 3-30.
NED-USGS (2000): US GeoData Digital Elevation Models
(<http://erg.usgs.gov/isb/pubs/factsheets/fs14899.html>
accessed on July 2007).
ONORATI, G., M. POSCOLIERI, R. VENTURA, V. CHIARINI and
U. CRUCILLA (1992): The digital elevation model of
Italy for geomorphology and structural geology, Catena,
19 (2), 147-178.
PARESCHI, M.T., M. FAVALLI, F. GIANNINI, R. SULPIZIO, G.
ZANCHETTA and R. SANTACROCE (2000a): May 5, 1998,
Debris flows in circumvesuvian areas (Southern Italy),
insights for hazard assessment, Geology, 28 (7), 639-642.
PARESCHI M.T., L. CAVARRA, M. FAVALLI, F. GIANNINI and A.
MERIGGI (2000b): GIS and Volcanic Risk management,
Nat. Hazard, 21, 361-379.
PARESCHI, M.T., R. SANTACROCE, R. SULPIZIO and G.
ZANCHETTA (2002): Volcanoclastic debris flows in the
Clanio Valley (Campania, Italy): insight for the assessment
of hazard potential, Geomorphology, 43, 219-231.
PIKE, R.J. and W.J. ROZEMA (1975): Spectral analysis of
landforms, Ann. Assoc. Am. Geogr., 65 (4), 449-516.
PIKE, R.J., F. GUAZZETTI, R.K. MARK, G. BORTOLUZZI, M.
LIGI, B. BENNETT,W. ACEVEDO and G.P. THELIN (1990):
Synoptic maps of Italy’s topography from a digital elevation
model, in Atti del I Workshop ‘Informatica e
Scienze della Terra’, October 18-20, 1989, Sarnano
(NA), Italy, 1-7.
REICHENBACH, P., R.J. PIKE, W. ACEVEDO and R.K. MARK
(1993): A new landform map of Italy in computershaded
relief, Boll. Geod. Sci. Affini, 52 (1), 21-44.
STEVENS, N.F., G. WADGE and J.B. MURRAY (1999): Lava
flow volume and morphology from digitized contour
maps: a case study at Mt. Etna, Sicily, Geomorphology,
28, 251-261.
STEVENS, N.F., V. MANVILLE and D.W. HERON (2003): The
sensitivity of a volcanic flow model to digital elevation
model accuracy: experiments with digitised map contours
and interferometric SAR at Ruapehu and Taranaki
volcanoes, New Zealand, J. Volcanol. Geotherm. Res.,
119, 89-105.
SURACE, L. (1997): La nuova rete geodetica nazionale
IGM95: risultati e prospettive di utilizzazione, Boll.
Geod. Sci. Affini, 56 (3), 357-377.
SWISSTOPO (2001): Swiss Federal Office of Topography. Product
Information (<http://www.swisstopo.ch> accessed on
July 2007).
SZÉKELY, B. and D. KARÁTSON (2004): DEM-based morphometry
as a tool for reconstructing primary volcanic
landforms: examples from the Börzsöny Mountains,
Hungary, Geomorphology, 63, 25-37.
WATSON, D.F. (1981): Computing the N-dimensional Delaunay
tessellation with application to Voronoi polytopes,
Comput. J., 24 (2), 167-172.
WEAVER, H.J. (Editor) (1983): Applications of Discrete and
Continuous Fourier Analysis (John Wiley, New York),
pp. 387.
ZHANG, W. and D. MONTGOMERY (1994): Digital elevation
model grid size, landscape representation, and hydrologic
simulations, Water Resour. Res., 30 (4), 1019-1028.
ZHOU, Q. and X. LIU (2004): Analysis on errors of derived
slope and aspect related to DEM data properties, Comput.
Geosci., 30 (4), 369-378.
S. GANDOLFI, M. ANZIDEI and F. RIGUZZI (1998): Digital
photogrammetric survey on the island of Vulcano,
Acta Vulcanol., 10, 1-5.
BAMBER, J.L., S. EKHOLM and W. KRABILL (2001): A new,
high resolution digital elevation model of Greenland
fully validated with airborne laser altimeter data, J.
Geophys. Res., 106 (B4), 6733-6745.
BISSON, M., M. FAVALLI, A. MORI, F. MAZZARINI, M.T.
PARESCHI and L. SINAPI (2003): A morphometric model
of the Aeolian Islands (Italy), Nuovo Cimento, 26 (4),
417-435.
BISSON, M., M. FAVALLI, A. FORNACIAI, F. MAZZARINI, I. ISOLA,
G. ZANCHETTA and M.T. PARESCHI (2005): A rapid
method to assess fire-related debris flow hazard in the
mediterranean region: an example from Sicily (Southern
Italy), Int. J. Appl. Earth Obs. Geoinf., 7, 217-231.
BISSON, M., M.T. PARESCHI, G. ZANCHETTA, R. SULPIZIO and
R. SANTACROCE (2007): Volcaniclastic debris flow occurrences
in the Campania Region (Southern Italy) and
their relation to Holocene-Late Pleistocene pyroclastic
fall deposits: implications for large scale hazard mapping,
Bull. Volcanol., doi: 10.1007/s00445-007-0127-4.
CARROZZO, M.T., D. LUZIO, C. MARGIOTTA, T. QUARTA, F.
ZUANNI, A. CHIRENTI and A.M. TUNDO (1985): Data
base of mean height values for the whole Italian landmass
and surrounding areas: determining and statistical
analysis, Boll. Geod. Sci. Affini, 44 (1), 38-56.
CHAPLOT, V., F. DARBOUX, H. BOURENNANE, S. LEGUÉDOIS,
N. SILVERA and K. PHACHOMPHON (2006): Accuracy of
interpolation techniques for the derivation of digital elevation
models in relation to landform types and data
density, Geomorphology, 77, 126-141.
FALORNI, G., V. TALES, E.R. VIVONI, R.L. BRAS and K.S.
AMARATUNGA (2005): Analysis and characterization of
the vertical accuracy of digital elevation models from
the Shuttle Radar Mission, J. Geophys. Res., 110,
F02005, doi: 10.1029/2003JF000113.
FARR, T.G. and M. KOBRICK (2000): Shuttle radar Topography
Mission produces a wealth of data, Eos, Trans. Am.
Geophys. Un., 81 (48), 583-585.
FAVALLI, M. and M.T. PARESCHI (2004): Digital elevation
model construction from structured topographic data:
the DEST algorithm, J. Geophys. Res., 109, F04004,
doi: 10.1029/2004JF000150.
FAVALLI, M., F. INNOCENTI, M.T. PARESCHI, G. PASCQUARÉ,
F. MAZZARINI, S. BRANCA, L. CAVARRA and A. RIBALDI
(1999): The DEM of Mt. Etna: geomorphological and
structural implications, Geodin. Acta, 12 (5), 279-290.
FAVALLI, M., M.T. PARESCHI, A. NERI and I. ISOLA (2005):
Forecasting lava flow paths by a stochastic approach,
Geophys. Res. Lett., 32, L03305, doi: 10.1029/
2004GL021718.
FAVALLI, M., G. CHIRICO, P. PAPALE, M.T. PARESCHI, M.
COLTELLI, N. LUCAYA and E. BOSCHI (2006a): Computer
simulations of lava flow paths in the town of
Goma, Nyiragongo volcano, Democratic Republic of
Congo, J. Geophys. Res., 111, B06202, doi: 10.1029/
2004JB003527.
FAVALLI, M., M.T. PARESCHI and G. ZANCHETTA (2006b):
Simulation of syn-eruptive floods in the circumvesuvian
plain (Southern Italy), Bull. Volcanol., 68, doi:
10.1007/s00445-005-0011-z, 349-362.
GALLANT, J.C., I.D. MOORE, M.F. HUTCHINSON and P.E.
GESSLER (1994): Estimating fractal dimension of profiles:
a comparison of methods, Math. Geol., 26 (4),
455-481.
GANAS A., S. PALLIDES and V. KARASTATHIS (2005): DEMbased
morphometry of range-front escarpments in Attica,
Central Greece, and its relation to fault slip rates,
Geomorphology, 65, 301-319.
GUZZETTI, F. and P. REICHENBACH (1994): Towards a definition
of topographic division of Italy, Geomorphology,
11, 57-74.
GUZZETTI, F., M. MARCHETTI and P. REICHENBACH (1997):
Large alluvional fans in the north-central Po Plain
(Northern Italy), Geomorphology, 18, 119-136.
GUZZETTI, F., A. CARRARA, M. CARDINALI and P. REICHENBACH
(1999): Landslide hazard evaluation: a review of
current techniques and their application in a multi-scale
study, Central Italy, Geomorphology, 31, 181-216.
HUTCHINSON, M.F. (1996): Australian Digital Elevation Model (<http://cres.anu.edu.au/outputs/ausdem.php> accessed
on July 2007).
KENWARD, T., D.P. LETTENMAIER, E.F. WOOD and E. FIELDING
(2000): Effects of digital elevation models accuracy
on hydrologic predictions, Remote Sensing Environ.,
74, 432-444.
KUHNI, A. and O.A. PFIFFNER (2001): The relief of the
Swiss Alps and adjacent areas and its relation to lithology
and structure: topographic analysis from a 250-m
DEM, Geomorphology, 41, 285-307.
LIU, H., K.C. JEZEK and B. LI (1999): Development of an
Antarctic digital elevation model by integrating cartographic
and remotely sensed data; a geographic information
system based approach, J. Geophys. Res., 104
(10), 23199-23213.
MACEDONIO, G. and M.T. PARESCHI (1991): An algorithm
for the triangulation of arbitrarily distributed points:
applications to volume estimate and terrain fitting,
Comput. Geosci., 17, 859-874.
MARTZ, L.W. and J. GARBRECHT (1995): Automated recognition
of valley lines and drainage networks from grid
digital elevation models: a review and a new method –
Comment, J. Hydrol., 167 (1-4), 393-396.
MASEROLI, R. (2002): Passaggio tra sistemi di riferimento
geodetici. La nuova procedura adottata dall’IGM, Boll.
Geod. Sci. Affini, 61 (2), 81-82.
MAZZARINI, F., M.T. PARESCHI, M. FAVALLI, I. ISOLA, S. TARQUINI
and E. BOSCHI (2005): Morphology of basaltic lava
channels during the Mt. Etna September 2004 eruption
from airborne laser altimeter data, Geophys. Res.
Lett., 32, L04305, doi: 10.1029/ 2004GL021815.
MOORE, I.D., R.B. GRAYSON and A.R. LADSON (1991): Digital
terrain modelling: a review of hydrological, geomorphological
and biological applications, Hydrol.
Processes, 5, 3-30.
NED-USGS (2000): US GeoData Digital Elevation Models
(<http://erg.usgs.gov/isb/pubs/factsheets/fs14899.html>
accessed on July 2007).
ONORATI, G., M. POSCOLIERI, R. VENTURA, V. CHIARINI and
U. CRUCILLA (1992): The digital elevation model of
Italy for geomorphology and structural geology, Catena,
19 (2), 147-178.
PARESCHI, M.T., M. FAVALLI, F. GIANNINI, R. SULPIZIO, G.
ZANCHETTA and R. SANTACROCE (2000a): May 5, 1998,
Debris flows in circumvesuvian areas (Southern Italy),
insights for hazard assessment, Geology, 28 (7), 639-642.
PARESCHI M.T., L. CAVARRA, M. FAVALLI, F. GIANNINI and A.
MERIGGI (2000b): GIS and Volcanic Risk management,
Nat. Hazard, 21, 361-379.
PARESCHI, M.T., R. SANTACROCE, R. SULPIZIO and G.
ZANCHETTA (2002): Volcanoclastic debris flows in the
Clanio Valley (Campania, Italy): insight for the assessment
of hazard potential, Geomorphology, 43, 219-231.
PIKE, R.J. and W.J. ROZEMA (1975): Spectral analysis of
landforms, Ann. Assoc. Am. Geogr., 65 (4), 449-516.
PIKE, R.J., F. GUAZZETTI, R.K. MARK, G. BORTOLUZZI, M.
LIGI, B. BENNETT,W. ACEVEDO and G.P. THELIN (1990):
Synoptic maps of Italy’s topography from a digital elevation
model, in Atti del I Workshop ‘Informatica e
Scienze della Terra’, October 18-20, 1989, Sarnano
(NA), Italy, 1-7.
REICHENBACH, P., R.J. PIKE, W. ACEVEDO and R.K. MARK
(1993): A new landform map of Italy in computershaded
relief, Boll. Geod. Sci. Affini, 52 (1), 21-44.
STEVENS, N.F., G. WADGE and J.B. MURRAY (1999): Lava
flow volume and morphology from digitized contour
maps: a case study at Mt. Etna, Sicily, Geomorphology,
28, 251-261.
STEVENS, N.F., V. MANVILLE and D.W. HERON (2003): The
sensitivity of a volcanic flow model to digital elevation
model accuracy: experiments with digitised map contours
and interferometric SAR at Ruapehu and Taranaki
volcanoes, New Zealand, J. Volcanol. Geotherm. Res.,
119, 89-105.
SURACE, L. (1997): La nuova rete geodetica nazionale
IGM95: risultati e prospettive di utilizzazione, Boll.
Geod. Sci. Affini, 56 (3), 357-377.
SWISSTOPO (2001): Swiss Federal Office of Topography. Product
Information (<http://www.swisstopo.ch> accessed on
July 2007).
SZÉKELY, B. and D. KARÁTSON (2004): DEM-based morphometry
as a tool for reconstructing primary volcanic
landforms: examples from the Börzsöny Mountains,
Hungary, Geomorphology, 63, 25-37.
WATSON, D.F. (1981): Computing the N-dimensional Delaunay
tessellation with application to Voronoi polytopes,
Comput. J., 24 (2), 167-172.
WEAVER, H.J. (Editor) (1983): Applications of Discrete and
Continuous Fourier Analysis (John Wiley, New York),
pp. 387.
ZHANG, W. and D. MONTGOMERY (1994): Digital elevation
model grid size, landscape representation, and hydrologic
simulations, Water Resour. Res., 30 (4), 1019-1028.
ZHOU, Q. and X. LIU (2004): Analysis on errors of derived
slope and aspect related to DEM data properties, Comput.
Geosci., 30 (4), 369-378.
Type
article
File(s)![Thumbnail Image]()
Loading...
Name
9tarquini.pdf
Size
17.15 MB
Format
Adobe PDF
Checksum (MD5)
77bd563198518afb3a73a8e7ef19db7b