Options
Publicity waves based on manipulated geoscientific data suggesting climatic trigger for majority of tsunami findings in the Mediterranean – Response to ‘Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean’ by Marriner et al.
Author(s)
Language
English
Obiettivo Specifico
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
2 supl/62 (2019)
Pages (printed)
7-45
Issued date
2019
Subjects
04. Solid Earth
Abstract
This article is a response to the publication by Nick Marriner, David Kaniewski, Christophe Morhange, Clément Flaux, Matthieu Giaime, Matteo Vacchi and James Goff entitled “Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean”, published in October 2017 in Science Advances.
Making use of radiometric data sets published in the context of selected palaeotsunami studies by independent research groups from different countries, Marriner et al. (2017) carried out statistical and time series analyses. They compared their results with an assessment of Mediterranean storminess since the mid-Holocene that was previously published by Kaniewski et al. (2016) based on a single-core study from coastal Croatia. Marriner et al. (2017) now present “previously unrecognized” 1500-year “tsunami megacycles” which they suggest correlating with Mediterranean climate deterioration. They conclude that up to 90 % of all the ‘tsunamis’ identified in original tsunami papers used for their study are “better as cribed to periods of heightened storminess”.
In this response, we show that (i) the comparison of statistical data describing storm and tsunami events presented by Marriner et al. (2017) is incorrect both from a geographical and a statistical point of view, (ii) the assumed periods of central Mediterranean storminess published by Kaniewski et al. (2016) are missing convincing geological and geochronological evidence and are statistically incorrect, (iii) the palaeotsunami data that was originally collected by different groups of authors were manipulated by Marriner et al. (2017) in a way that the resulting data set – used as a benchmark for the entire study of these authors – is wrong and inaccurate, and that (iv) Marriner et al. (2017) did not address or even negate the original sedimentological studies’ presentation of comparative tsunami versus storm deposits for the selected individual localities.
Based on a thorough and detailed evaluation of the geoscientific background and the methodological approach of the studies by Kaniewski et al. (2016) and Marriner et al. (2017), we conclude that there is no serious and reliable geoscientific evidence for increased storminess in the (central) Mediterranean Sea between 3400–2550, 2000–1800, 1650–1450, 1300–900 and 400–100 cal BP. The impact of those storms in the Mediterranean, producing geological traces somewhat comparable to those caused by tsunamis, is insignificantly small. For the period 1902–2017, Mediterranean tsunamis make up 73–98 % of all com- bined extreme wave events (EWE) leading to coastal flooding and appeared up to 181 times deadlier than comparable storm effects. This is the reason why coastal Mediterranean research has focused on Holocene records of the tsunami hazard, while research on comparable storm effects is of lower significance. The validity of geological evidence for Mediterranean EWE and their interpretation as caused by palaeotsunami impacts thus remains untouched. Tsunamis, in most cases directly and indirectly induced by seismo-tectonics, have always been a much greater threat to Mediterranean coastal regions than com- parable storm effects. ‘Tsunami megacycles’ as expressions of a 1500-year periodicity centered on the Little Ice Age, 1600 and 3100 cal BP that were correlated with questionable storm data do not exist. Cause and effect relationships work the other way round: Major tsunami events, testified by historical accounts, such as those that occurred in 1908 AD, 1755 AD, 1693 AD and 365 AD, induced numerous studies along Mediterranean coasts. These investigations resulted in a large number of publications that specifically focus on those time periods, suspected by Marriner et al. (2017) to bear signs of increased storminess, namely 200–300 BP and 1600 BP.
The Mediterranean tsunami record cannot be ascribed to periods of increased storminess. On the contrary, the tsunami record as interpreted by the authors of the original papers cited by Marriner et al. (2017), is due to the outstandingly high seismo-tectonic activity of the region. Mediterranean tsunamis are mostly triggered by earthquakes or by earthquake-related secondary effects such as underwater mass movements.
The study by Marriner et al. (2017) is also problematic because it includes simple basic statisti- cal mistakes and major methodological inconsistencies. The geomorphological and sedimentary back- ground of EWE deposits was not taken into account. The ‘broad brush’ approach used by Marriner et al. (2017) to sweep sedimentary deposits from tsunami origin into the storm bag origin, just on the basis of (false) statistics coupled with very broad and unreliable palaeoclimatic indicators and time frames, is misleading.
The distortion of original data collected and interpreted by other research groups by Marriner et al. (2017) is particularly disturbing. Their publication is also bound to question in this case the effective- ness of scientific quality assurance in modern publishing commerce. Marriner et al. (2017: 7) talk down the considerable risk to human settlements and infrastructure along Mediterranean coasts in relation to tsunami and earthquake hazards. Their conclusion is not only wrong as a result of their incorrect data mining and analyses, it is also irresponsible with regard to national and international efforts of tsunami and earthquake risk mitigation.
Making use of radiometric data sets published in the context of selected palaeotsunami studies by independent research groups from different countries, Marriner et al. (2017) carried out statistical and time series analyses. They compared their results with an assessment of Mediterranean storminess since the mid-Holocene that was previously published by Kaniewski et al. (2016) based on a single-core study from coastal Croatia. Marriner et al. (2017) now present “previously unrecognized” 1500-year “tsunami megacycles” which they suggest correlating with Mediterranean climate deterioration. They conclude that up to 90 % of all the ‘tsunamis’ identified in original tsunami papers used for their study are “better as cribed to periods of heightened storminess”.
In this response, we show that (i) the comparison of statistical data describing storm and tsunami events presented by Marriner et al. (2017) is incorrect both from a geographical and a statistical point of view, (ii) the assumed periods of central Mediterranean storminess published by Kaniewski et al. (2016) are missing convincing geological and geochronological evidence and are statistically incorrect, (iii) the palaeotsunami data that was originally collected by different groups of authors were manipulated by Marriner et al. (2017) in a way that the resulting data set – used as a benchmark for the entire study of these authors – is wrong and inaccurate, and that (iv) Marriner et al. (2017) did not address or even negate the original sedimentological studies’ presentation of comparative tsunami versus storm deposits for the selected individual localities.
Based on a thorough and detailed evaluation of the geoscientific background and the methodological approach of the studies by Kaniewski et al. (2016) and Marriner et al. (2017), we conclude that there is no serious and reliable geoscientific evidence for increased storminess in the (central) Mediterranean Sea between 3400–2550, 2000–1800, 1650–1450, 1300–900 and 400–100 cal BP. The impact of those storms in the Mediterranean, producing geological traces somewhat comparable to those caused by tsunamis, is insignificantly small. For the period 1902–2017, Mediterranean tsunamis make up 73–98 % of all com- bined extreme wave events (EWE) leading to coastal flooding and appeared up to 181 times deadlier than comparable storm effects. This is the reason why coastal Mediterranean research has focused on Holocene records of the tsunami hazard, while research on comparable storm effects is of lower significance. The validity of geological evidence for Mediterranean EWE and their interpretation as caused by palaeotsunami impacts thus remains untouched. Tsunamis, in most cases directly and indirectly induced by seismo-tectonics, have always been a much greater threat to Mediterranean coastal regions than com- parable storm effects. ‘Tsunami megacycles’ as expressions of a 1500-year periodicity centered on the Little Ice Age, 1600 and 3100 cal BP that were correlated with questionable storm data do not exist. Cause and effect relationships work the other way round: Major tsunami events, testified by historical accounts, such as those that occurred in 1908 AD, 1755 AD, 1693 AD and 365 AD, induced numerous studies along Mediterranean coasts. These investigations resulted in a large number of publications that specifically focus on those time periods, suspected by Marriner et al. (2017) to bear signs of increased storminess, namely 200–300 BP and 1600 BP.
The Mediterranean tsunami record cannot be ascribed to periods of increased storminess. On the contrary, the tsunami record as interpreted by the authors of the original papers cited by Marriner et al. (2017), is due to the outstandingly high seismo-tectonic activity of the region. Mediterranean tsunamis are mostly triggered by earthquakes or by earthquake-related secondary effects such as underwater mass movements.
The study by Marriner et al. (2017) is also problematic because it includes simple basic statisti- cal mistakes and major methodological inconsistencies. The geomorphological and sedimentary back- ground of EWE deposits was not taken into account. The ‘broad brush’ approach used by Marriner et al. (2017) to sweep sedimentary deposits from tsunami origin into the storm bag origin, just on the basis of (false) statistics coupled with very broad and unreliable palaeoclimatic indicators and time frames, is misleading.
The distortion of original data collected and interpreted by other research groups by Marriner et al. (2017) is particularly disturbing. Their publication is also bound to question in this case the effective- ness of scientific quality assurance in modern publishing commerce. Marriner et al. (2017: 7) talk down the considerable risk to human settlements and infrastructure along Mediterranean coasts in relation to tsunami and earthquake hazards. Their conclusion is not only wrong as a result of their incorrect data mining and analyses, it is also irresponsible with regard to national and international efforts of tsunami and earthquake risk mitigation.
References
Anzidei, M., Antonioli, F., Furlani, S., Lambeck, K., Mastronuzzi, G., Serpelloni, E. & Vannucci, G. (2014): Coastal structure, sea level changes and vertical motion of the land in the Mediterranean. – In: Martini, I. P. & Wanless, H. R. (eds): Sedimentary coastal zones from high to low latitudes: similari- ties and differences. – Geological Society, London, Special Publications 388 (1), https://doi.org/10.1144/ SP388.20.
Ambraseys, N. N. (1960): The seismic sea wave of July 9, 1956, in the Greek Archipelago. – Journal of Geo- physical Research 65: 1257–1265.
Ambraseys, N. N. (2009): Earthquakes in the Mediterranean and Middle East. A multidisciplinary study of seismicity up to 1900. – Cambridge University Press, 947 pp., Cambridge.
Badertscher, S., Fleitmann, D., Cheng, H., Edwards, R. L., Göktürk, O. M., Zumbühl, A., Leuen- berger, M. & Tüysüz, O. (2011): Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. – Nature Geoscience 4: 236–239, http://dx.doi.org/10.1038/ngeo1106.
Baratta, M. (1910): La catastrofe sismica Calabro messinese (28 dicembre 1908). – Presso la Società geo- grafica italiana.
Biolchi, S., Furlani, S., Antonioli, F., Baldassini, N., Deguara, J. C., Devoto, S., Di Stefano, A., Evans, J., Gambin, T., Gauci, R., Mastronuzzi, G., Monaco, C. & Scicchitano, G. (2016): Boulder accumulations related to extreme wave events on the eastern coast of Malta. – Natural Hazards and Earth System Sciences 16: 737–756, http://dx.doi.org/10.5194/nhess-16-737-2016.
Bonaccorso, A., Calvari, S., Garfì, G., Lodato, L. & Patanè, D. (2003): Dynamics of the December 2002 flank failiure and tsunami at Stromboli volcano inferred by volcanological and geophysical observa- tions. – Geophysical Research Letters 30 (18): 1941, http://dx.doi.org/10.1029/2003GL017702.
Bronk Ramsey, C., Manning, S. W. & Galimberti, M. (2004): Dating the volcanic eruption at Thera. – Radiocarbon 46 (1): 325–344.Bruins, H. J., MacGillivray, J. A., Synolakis, C. E., Benjamini, C., Keller, J., Kisch, H. J., Klügel, A. & Van der Plicht, J. (2008): Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. – Journal of Archaeological Science 35 (1): 191–212.
Bruins, H. J. & van der Plicht, J. (2014): The Thera olive branch, Akrotiri (Thera) and Palaikastro (Crete): comparing radiocarbon results of the Santorini eruption. – Antiquity 88: 282–287.
Cita, M. B. & Rimoldi, B. (1997): Geological and geophysical evidence for a Holocene tsunami deposit in the eastern Mediterranean deep-sea record. – Journal of Geodynamics 24 (1–4): 293–304.
Cita, M. B., Camerlenghi, A. & Rimordi, B. (1996): Deep-sea tsunami deposits in the eastern Mediter- ranean: new evidence and depositional models. – Sedimentary Geology 104: 155–173, http://dx.doi. org/10.1016/0037-0738(95)00126-3.
Comerci, V., Vittori, E., Blumetti, A. M., Di Manna, P., Guerrieri, L., Lucarini, M. & Serva, L. (2015): Environmental effects of the December 28, 1908 Southern Calabria-Messina (Southern Italy) earth- quake. – Natural Hazards 76 (3): 1849–1891, http://dx.doi.org/10.1007/s11069-014-1573-x.
Davolio, S., Miglietta, M. M., Moscatello, A., Pacifico, F., Buzzi, A. & Rotunno, R. (2009): Nu- merical forecast and analysis of a tropical-like cyclone in the Ionian Sea. – Natural Hazards and Earth System Sciences 9: 551–562.
De Martini, P. M., Burrato, P., Pantosti, D., Maramai, A., Graziani, L. & Abramson, H. (2003): Iden- tification of tsunami deposits and liquefaction features in the Gargano area (Italy): paleoseismological implication. – Annals of Geophysics 46: 883–902.
De Martini, P. M., Barbano, M. S., Smedile, A., Gerardi, F., Pantosti, D., Del Carlo, P. & Pirrotta, C. (2010): A unique 4000 year long geological record of multiple tsunami inundations in the Augusta Bay (eastern Sicily, Italy). – Marine Geology 276: 42–57.
Dey, H. & Goodman-Tchernov, B. (2010): Tsunamis and the port of Caesarea Maritima over the longue durée: a geoarchaeological perspective. – Journal of Roman Archaeology 23: 265–284, https://doi. org/10.1017/S1047759400002397.
Dey, H., Goodman-Tchernov, B. & Sharvit, J. (2014): Archaeological evidence for the tsunami of January 18, A. D. 749: a chapter in the history of Early Islamic Qâysariyah (Caesarea Maritima). – Journal of
Roman Archaeology 27: 357–373, http://dx.doi.org/10.1017/S1047759414001287. nd Einsele, G. (2000): Sedimentary basins. Evolution, facies, and sediment budget. – 2
edition, 792 pp.,
Springer, Berlin/Heidelberg.
EM-DAT database (2017): The Emergency Events Database. Centre for Research on the Epidemiology of
Disaster, Université Catholique de Louvain (UCL), D. Guha-Sapir. – Brussels, Belgium, www.emdat.be
(last access: 2017/12/15).
Fago P., Pignatelli C., Piscitelli A., Milella M., Venerito M., Sansò P. & Mastronuzzi G. (2014):
The WebGIS on Italian tsunami: an useful reference tool. – Marine Geology 355: 369–376, http://
dx.doi.org/10.1016/j.margeo.2014.06.012.
Finkler, C., Fischer, P., Baika, K., Rigakou, D., Metallinou, G., Hadler, H. & Vött, A. (2017a): Trac-
ing the Alkinoos Harbor of ancient Kerkyra, Greece, and reconstructing its paleotsunami history. –
Geoarchaeology 33: 24–42,, https://doi.org/10.1002/gea.21609.
Finkler, C., Baika, K., Rigakou, D., Metallinou, G., Fischer, P., Hadler, H., Emde, K. & Vött, A.
(2017b): Geoarchaeological investigations of a prominent quay wall in ancient Corcyra – implications for harbour development, palaeoenvironmental changes and tectonic geomorphology of Corfu island (Ionian Islands, Greece). – Quaternary International, https://doi.org/10.1016/j.quaint.2017.05.013.
Fita, L., Romero, R., Luque, A., Emanuel, K. & Ramis, C. (2007): Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. – Natural Hazards and Earth System Sciences 7: 41–56.
Fu, L., Heidarzadeh, M., Cukur, D., Chiocci, F. L., Ridente, D., Gross, F., Bialas, J. & Krastel, S. (2017): Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strai, Southern Italy. – Geophysical Research Letters 10.1002/2017GL072647, http://dx.doi.org/10.1002/2017GL072647.
Gaki-Papanastassiou, K., Maroukian, H., Papanastassiou, D., Palyvos, N. & Lemeille, F. (2001): Geo- morphological study in the Lokrian coast of northern Evoikos Gulf (central Greece) and evidence of palaeoseismic destructions. – Rapports et Procès-verbaux des Réunions, Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée 36: 25.Galadini, F., Hinzen, K.-G. & Stiros, S. (2006): Archaeoseismology: Methodological issues and proce- dure. – Journal of Seismology 10: 395–414, http://dx.doi.org/10.1007/s10950-006-9027-x.
Galanopoulos, A. G. (1960): Tsunamis observed on the coasts of Greece from antiquity to present time. – Annali di Geofisica 13: 369–386.
Gerardi, F., Barbano, M. S., De Martini, P. M. & Pantosti, D. (2008): Discrimination of tsunami sources (earthquake versus landslide) on the basis of historical data in eastern Sicily and southern Calabria. – Bul- letin of the Seismological Society of America 98 (6): 2795–2805, http://dx.doi.org/10.1785/0120070192.
Gerardi, F., Smedile, A., Pirrotta, C., Barbano, M. S., De Martini, P. M., Pinzi, S., Gueli, A. M., Ris- tuccia, G. M., Stella, G. & Troja, O. (2012): Geological record of tsunami inundations in Pantano Morghella (south-eastern Sicily) both from near- and far-field sources. – Natural Hazards and Earth System Sciences 12: 1185–1200, http://dy.doi.org/10.5194/nhess-12-1185-2012.
Gianfreda, F., Mastronuzzi, G. & Sanso, P. (2001): Impact of historical tsunamis on a sandy coastal bar- rier: an example from the northern Gargano coast, southern Italy. – Natural Hazards and Earth System Sciences 1: 213–219.
Goded, T., Buforn, E. & Muñoz, D. (2008): The 1494 and 1680 Málaga (Southern Spain) Earthquakes. – Seismological Research Letters 79 (5): 707–715.
Gross, F., Krastel, S., Chiocci, F. L., Ridente, D., Bialas, J., Schwab, J., Beier, J., Cukur, D. & Win- kelmann, D. (2014): Evidence for submarine landslides offshore Mt. Etna, Italy. – In: Krastel, S., Behr- mann, J.-H., Völker, D., Stipp, M., Berdt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M. & Harbitz, C. B. (eds): Submarine mass movements and their consequences. – 6th international symposium. – Ad- vances in Natural and Technological Hazards Research 37: 307–316, https://link.springer.com/chap- ter/10.1007/978-3-319-00972-8_27.
Guidoboni, E., Comastri, A. & Traina, G. (1994): Catalogue of ancient earthquakes in the Mediterranean area up to the 10th century. – ING-SGA, Bologna,Volume 1, 504 pp.
Guidoboni, E. & Comastri, A. (1997): The large earthquake of 8 August 1303 in Crete: seismic scenario and tsunami in the Mediterranean area. – Journal of Seismology 1: 55–72.
Guidoboni, E. & Comastri, A. (2005): Catalogue of earthquakes and tsunamis in the Mediterranean area from the 11th to the 15th century. – Volume 2, 1037 pp., INGV-SGA, Bologna.
Hadler, H., Vött, A., Koster, B., Mathes-Schmidt, M., Mattern, T., Ntageretzis, K., Reicherter, K. & Willershäuser, T. (2013): Multiple late-Holocene tsunami landfall in the eastern Gulf of Corinth recorded in the palaeotsunami geo-archive at Lechaion, harbour of ancient Corinth (Peloponnese, Gre- ece). – Zeitschrift für Geomorphologie N. F., Supplementary Issue 57 (4): 139–180, http://dx.doi.org/10 .1127/0372-8854/2013/S-00138.
He, L., Xue, C., Ye, S., Laws, E. A., Yuan, H., Yang, S. & Du, X. (2017): Holocene evolution of the Liahoe Delta, a tide-dominated delta formed by multiple rivers in Northeast China. – Journal of Asian Earth Sciences 152: 52–68, http://dx.doi.org/10.1016/j.jseaes.2017.11.035.
He, M., Zhuo, H., Chen, W., Wang, Y., Du, J., Liu, L., Wang, L. & Wan, H. (2017): Sequence stratigraphy and depositional architecture of the pearl River Delta system, northern South China Sea: An interactive response to sea level, tectonics and paleoceanography. – Marine and Petroleum Geology 84: 76–101, http://dx.doi.org/10.1016/j.marpetgeo.2017.03.022.
Hoffmann, N., Master, D. & Goodman-Tchernov, B. (2018): Possible tsunami inundation identified amongst 4–5th century BCE archaeological deposits at Tel Ashkelon, Israel. – Marine Geology 396: 150–159, https://doi.org/10.1016/j.margeo.2017.10.009.
Ioualalen, M., Migeon, S. & Sardoux, O. (2010): Landslide tsunami vulnerability in the Ligurian Sea: case study of the October 16th 1979 Nice international airport submarine landslide and of identified geo- logical mass failures. – Geophysical Journal International 181: 724–740, http://dx.doi.org/10.1111/j.1365- 246X.2010.04572.x.
Kaniewski, D., Marriner, N., Morhange, C., Faivre, S., Otto, T. & Van Campo, E. (2016): Solar pac- ing of storm surges, coastal flooding and agricultural losses in the Central Mediterranean. – Scientific Reports 6: 25197, http://dx.doi.org/10.1038/srep25197.
Kastens, K. A. & Cita, M. B. (1981): Tsunami-induced sediment transport in the abyssal Mediterranean Sea. – Geological Society of America Bulletin 89: 591–604.Kelletat, D. (2005): Neue Beobachtungen zu Paläo-Tsunami im Mittelmeergebiet: Mallorca und Bucht von Alanya, türkische Südküste. – In: Beck, N. (Hrsg.): Neue Ergebnisse der Meeres- und Küstenfor- schung. – Beiträge der 23. Jahrestagung des Arbeitskreises „Geographie der Meere und Küsten“ (AMK), Koblenz, 28.–30. April 2005. – Schriften des Arbeitskreises Landes- und Volkskunde Koblenz (ALV) 4: 1–14.
Kelletat, D. (2013): Physische Geographie der Meere und Küsten. – 3 lag, Stuttgart.
rd
edition, 290 pp., Borntraeger-Ver-
14
Kelletat, D. & Schellmann, G. (2002): Tsunamis on Cyprus. Field evidences and C dating results. –
Zeitschrift für Geomorphologie N. F., Supplementary Issue 46: 19–34.
Kelly, G. (2004): Ammianus and the great tsunami. – The Journal of Roman Studies 94: 141–167.
Kolaiti, E., Papadopoulos, G. A., Morhange, C., Vacchi, M., Triantaphyllou, I. & Mourtzas, N. D.
(2017): Palaeoenvironmental evolution of the ancient harbor of Lechaion (Corinth Gulf, Greece): Were changes driven by human impacts and gradual coastal processes or catastrophic tsunamis? – Marine Geology 392: 105–121, http://dx.doi.org/10.1016/j.margeo.2017.08.004.
Kontopoulos, N. & Avramidis, P. (2003): A late Holocene record of environmental changes from the Aliki lagoon, Egion, North Peloponnesus, Greece. – Quaternary International 111: 75–90, https://doi. org/10.1016/S1040-6182(03)00016-8.
Kortekaas, S. (2002): Tsunamis, storms and earthquakes: Distinguishing coastal flooding events. – PhD Thesis, University of Coventry, Coventry.
Lagouvardos, K., Kotroni, V., Nickovic, S., Jovic, D., Kallos, G. & Tremback, C.J. (1999): Observa- tions and model simulations of a winter sub-synoptic vortex over the central Mediterranean. – Mete- orological Applications 6: 371–383.
Lario, J., Zazo, C., Goy, J.L., Silva, P.G., Bardaji, T., Cabero, A. & Dabrio, C.J. (2011): Holocene palaeot- sunami catalogue of SW Iberia. – Quaternary International 242 (1): 196–200.
Larson, D.R. (2007): Unitary systems and wavelet sets. – In: Qian, T., Vai, M.I. & Xu, Y. (eds): Wave- let analysis and applications. – Applied Numerical Harmonic Analysis, 143–171, Birkhäu- ser.
Lespez, L., Dalongeville, R., Pastre, J.-F., Darmon, F., Mathieu, R. & Poursoulis, G. (2003): Late- Middle-Holocene palaeo-environmental evolution and coastline changes of Malia (Crete). – In: Fouache, E. (ed.): The Mediterranean world. – Environment and history, 439–452, Elsevier.
Luque, L., Lario, J., Civis, J., Silva, P.G., Zazo, C., Goy, L.J. & Dabrio, C.J. (2002): Sedimentary record of a tsunami during Roman times, Bay of Cadiz, Spain. – Journal of Quaternary Science 17 (5–6): 623–631. Maramai, A., Graziani, L., Alessio, G., Burrato, P., Colini, L., Cucci, L., Nappi, R., Nardi, A. & Vilardo, G. (2005): Near- and far-field survey report of the 30 December 2002, Stromboli (Southern
Italy) tsunami. – Marine Geology 215: 93–106, http://dx.doi.org/10.1016/j.margeo.2004.11.009. Marriner, N., Kaniewski, D., Morhange, C., Flaux, C., Giaime, M., Vacchi, M. & Goff, J. (2017): Tsu- namis in the geological record: Making waves with a cautionary tale from the Mediterranean. – Science
Advances 3 (10): 31700485, http://dx.doi.org/10.1126/sciadv.1700485.
Mastronuzzi, G. & Sansò, P. (2000): Boulders transport by catastrophic waves along the Ionian coast of
Apulia (Southern Italy). – Marine Geology 170: 93–103, http://dx.doi.org/10.1016/S0025-3227(00)00068-
2.
Mastronuzzi, G. & Sansò, P. (2002): Holocene uplift rates and historical rapid sea-level changes at the
Gargano promontory, Italy. – Journal of Quaternary Science 17 (5–6): 593–606.
Mastronuzzi, G. & Sansò, P. (2004): Large boulder accumulations by extreme waves along the Adriatic coast of southern Apulia (Italy). – Quaternary International 120: 173–184, http://dx.doi.org/10.1016/j.
quaint.2004.01.016.
Mastronuzzi G. & Pignatelli C. (2012): The boulders berm of Punta Saguerra (Taranto, Italy): a mor-
phological imprint of the Rossano Calabro tsunami of April 24, 1836? – Earth Planets Space 64 (10):
829–842, http://dx.doi.org/10.5047/eps.2011.08.018.
Mastronuzzi, G. & Sansò, P. (2012): The role of large earthquakes and tsunami in the Late Holocene evo-
lution of Fortore River coastal plain (Apulia, Italy): a synthesis. – Geomorphology 138: 89–99, http:// dx.doi.org/10.1016/j.geomorph.2011.08.027.Mastronuzzi, G., Pignatelli, C. & Sansò, P. (2006): Boulder Fields: A Valuable Morphological Indicator of Paleotsunami in the Mediterranean Sea. – Zeitschrift für Geomorphologie N.F., Supplementary Issue 146: 173–194.
Mastronuzzi, G., Pignatelli, C., Sansò, P. & Selleri, G. (2007): Boulder accumulations produced by the 20th February 1743 tsunami along the coast of southeastern Salento (Apulia region, Italy). – Marine Geology 242: 191–205, http://dx.doi.org/10.1016/j.margeo.2006.10.025.
Mathes-Schmidt, M., Schwarzbauer, J., Papanikolaou, I., Syberberg, F., Thiele, A., Wittkopp, F. & Reicherter, K. (2013): Geochemical and micropalaeontological investigations of tsunamigenic layers along the Thracian Coast (Northern Aegean Sea, Greece). – Zeitschrift für Geomorphologie N.F., Sup- plementary Issue 57 (4): 5–27, https://doi.org/10.1127/0372-8854/2013/S-00153.
Maouche, S., Morhange, C. & Meghraoui, M. (2009): Large boulder accumulation on the Algerian coast evidence tsunami events in the Western Mediterranean. – Marine Geology 262: 96–104, http://dx.doi. org/10.1016/j.margeo.2009.03.013.
May, S.M., Vött, A., Brückner, H. & Smedile, A. (2012): The Gyra washover fan in the Lefkada Lagoon, NW Greece – possible evidence of the 365 AD Crete earthquake and tsunami. – Earth, Planets and Space 64: 859–874, https://doi.org/10.5047/eps.2012.03.007.
McCoy, F.W. & Heiken, G. (2000): Tsunami generated by the Late Bronze Age eruption of Thera (San- torini), Greece. – Pure Applied Geophysics 157: 1227–1256.
Middleton, G.V. (1973): Johannes Walther’s law of the correlation of facies. – Bulletin of the Geological Society of America 84: 979–987.
Minoura, K., Imamura, F., Kuran, U., Nakamura, T., Papadopoulos, G.A., Takahashi, T. & Yalciner, A.C. (2000): Discovery of Minoan tsunami deposits. – Geology 28 (1): 59–62.
Morhange, C., Marriner, N. & Pirazzoli, P.A. (2006): Evidence of late-Holocene tsunami events in Lebanon. – Zeitschrift für Geomorphologie N.F., Supplementary Issue 146: 81–95.
Morelli, A., Bruno, L., Cleveland, D.M., Drexler, T.M. & Amorosi, A. (2017): Reconstructing Last Glacial Maximum and Younger Dryas paleolandscape through subsurface paleosol stratigraphy: An example from the Po coastal plain, Italy. – Geomorphology 295: 790–800, http://dx.doi.org/10.1016/j. geomorph.2017.08.013.
Morton, R.A., Gelfenbaum, G. & Jaffe, B.E. (2007): Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. – Sedimentary Geology 200: 184–207.
NOAA NGDC/WDS database (2017): NGDC/WDS Global Historical Tsunami Database published by the National Centers for Environmental Information of the U.S. – National Oceanic and Atmospheric Ad- ministration, formerly National Geophysical Data Center, http://dx.doi.org/10.7289/V5PN93H7 (last access 2017/12/15).
Papadopoulos, G.A. & Chalkis, B.J. (1984): Tsunamis observed in Greece and the surrounding area from antiquity up to the present times. – Marine Geology 56: 309–317, http://dx.doi.org/10.1016/0025- 3227(84)90022-7.
Pareschi, M.T., Boschi, E., Mazzarini, F. & Favalli, M. (2006): Large submarine landslides offshore Mt. Etna. – Geophysical Research Letters 33: L13302.
Pennington, B.T., Sturt, F., Wilson, P., Rowland, J. & Brown, A.G. (2017): The fluvial evolution of the Holocene Nile Delta. – Quaternary Science Reviews 170: 212–231, http://dx.doi.org/j.quasci- rev.2017.06.017.
Períañez, R. & Abril, J.M. (2014): Modelling tsunamis in the Eastern Mediterranean Sea. Application to the Minoan Santorini tsunami sequence as a potential scenario for the biblical Exodus. – Journal of Marine Systems 139: 91–102, http://dx.doi.org/doi:10.1016/j.jmarsys.2014.05.016.
Pirazzoli, P.A., Stiros, S.C., Arnold, M., Laborel, J. & Laborel-Deguen, F. (1999): Late Holocene coseismic vertical displacement and tsunami deposits near Kynos, Golf of Euboea, central Greece. – Physics and Chemistry of the Earth (A) 24 (4): 361–367.
Platania, G. (1909): Il maremoto dello stretto di Messina del 28 dicembre 1908. – Societá tipografica modenese.
Presti, D., Neri, G., Orecchio, B., Scolaro, S. & Totaro, C. (2017): The 1905 Calabria, southern Italy, earthquake: hypocenter location, causative process, and stress changes induced in the area of the 1908 Messina Straits earthquake. – Bulletin of the Seismological Society of America 107 (6): 2613–2623, http://dx.doi.org/10.1785/0120170094.Reicherter, K. & Hübscher, C. (2006): Off-shore evidence for the 1522 Almería earthquake (M > 6.5) in the Alborán Sea (southern Spain). – Journal of Seismology 11: 15–26, http://dx.doi.org/10.1007/s10950- 006-9024-0.
Reicherter, K. & Becker-Heidmann, P. (2009): Tsunami deposits in the western Mediterranean: Re- mains of the 1522 Almería Earthquake? – In: Reicherter, K., Michetti, A.M. & Silva, P.G. (eds): Paleoseismology: Historical and prehistorical records of earthquake ground effects for seismic hazard assessment. – Journal of the Geological Society London, Special Publication 316: 217–235.
Reicherter, K., Papanikolaou, I., Roger, J., Mathes-Schmidt, M., Papanikolaou, D., Rössler, S., Grützner, Ch. & Stamatis, G. (2010): Holocene tsunamigenic sediments and tsunami modelling in the Thermaikos Gulf area (northern Greece). – Zeitschrift für Geomorphologie N.F., Supplementary Issue 54 (3): 99–126, https://doi.org/10.1127/0372-8854/2010/0054S3-0021.
Reineck, H.-E. & Singh, I.B. (1980): Depositional sedimentary environments. With reference to terrig- enous clastics. – Springer, 2nd edition, 551 pp., Berlin/Heidelberg/New York.
Reinhardt, E.G., Goodman, B.N., Boyce, J.I., Lopez, G., van Henstum, P., Rink, W.J., Mart, Y. & Ra- ban, A. (2006): The tsunami of 13 December A.D. 115 and the destruction of Herod the Great’s harbor at Caesarea Maritima, Israel. – Geology 34 (12): 1061–1064.
Röbke, B.R. & Vött, A. (2017): The tsunami phenomenon. – Progress in Oceanography 159: 296–322, http://dx.doi.org/10.1016/j.pocean.2017.09.003.
Röbke, B.R., Schüttrumpf, H. & Vött, A. (2018): Hydro- and morphodynamic tsunami simulations for the Ambrakian Gulf (Greece) and comparison with geoscientific field traces. – Geophysical Journal International 213: 317–339, http://dx.doi.org/10.1093/gji/ggx553.
Rolfe, J.C. (1940): Ammianus Marcellinus, History, Volume II, Books 20–26, Translation by J.C. Rolfe. – Loeb Classical Library 315, Harvard University Press.
Sabatier, P., Dezileau, L., Colin, C., Briqueu, L., Bouchette, F., Martinez, P., Siani, G., Raynal, O. & von Grafenstein, U. (2012): 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events. – Quaternary Research 77 (1): 1–11, http://dx.doi.org/10.1016/j. yqres.2011.09.002.
Sahal, A., Roger, J., Allgeyer, S., Lemaire, B., Hébert, H., Scheindelé, F. & Lavigne, F. (2009): The tsunami triggered by the 21 May 2003 Boumerdès-Zemmouro (Algeria) earthquake: field investiga- tions on the French Mediterreanean coast and tsunami modeling. – Natural Hazards and Earth System Sciences 9: 1823–1834.
Shah-Hosseini, M., Morhange, C., De Marco, A., Wante, J., Anthony, E.J., Sabatier, F., Mastro- nuzzi, G., Pignatelli, C. & Piscitelli, A. (2013): Coastal boulders in Martigues, French Mediterra- nean: evidence for extreme storm waves during the Little Ice Age. – Zeitschrift für Geomorphologie N.F., Supplementary Issue 57 (4): 181–199.
Shaw, B., Ambrayses, N.N., England, P.C., Floyd, M.A., Gorman, G.J., Highham, T.F.G., Jackson, J.A., Nocquet, J.-M., Pain, C.C. & Piggott, M.D. (2008): Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. – Nature Geoscience, http://www.nature.com/doi- finder/10.1038/ngeo151.
Sintubin, M. (2011): Archaeoseismology: Past, present and future. – Quaternary International 242: 4–10, http://dx.doi.org/10.1016/j.quaint.2011.03.056.
Smedile, A., De Martini, P.M., Pantosti, D., Bellucci, L., Del Carlo, P., Gasperini, L., Pirrotta, C., Polonia, A. & Boschi, E. (2011): Possible tsunami signatures from an integrated study in the Augusta Bay offshore (Eastern Sicily – Italy). – Marine Geology 281: 1–13.
Smith, C.F. (1921): Thucydides. History of the Peloponnesian War. – Volume III, Books 5–6, Translation by C.F. Smith, Loeb Classical Library 110.
Soloviev, S.L. (1990): Tsunamigenic zones in the Mediterranean Sea. – Natural Hazards 3: 183–202. Soloviev, S.L., Solovieva, O.N., Go, C.N., Kim, K.S. & Shchetnikov, N.A. (2000): Tsunamis in the Medi-
terranean Sea 2000 B.C. – 2000 A.D. – Kluwer, 237 pp., Dordrecht.
Spiske, M., Piepenbreier, J., Benavente, C. & Bahlburg, H. (2013): Preservation potential of tsunami
deposits on arid siliciclastic coasts. – Earth Science Reviews 126: 58–73, http://dx.doi.org/10.1016/j.ear- scirev.2013.07.009.Szczuciński, W. (2012): The post-depositional changes of the onshore 2004 tsunami deposits on the Anda- man Sea coast of Thailand. – Natural Hazards 60: 115–133, http://dx.doi.org/10.1007/s11069-011-9956-8.
Tappin, D.R. (2017): Tsunamis from submarine landslides. – Geology Today 33 (5): 190–200.
Thomas, R., Parker, S.T. & Niemi, T.M. (2007): Structural damage from earthquakes in the second-ninth centuries at the archaeological site of Aila in Aqaba, Jordan. – Bulletin of the American Schools of Ori-
ental Research 346: 59–77, http://www.jstor.org/stable/25067010.
Tyuleneva, N., Braun, Y., Katz, T., Suchkov, I. & Goodman-Tchernov, B. (2017): A new chalcolithic-era
tsunami event identified in the offshore sedimentary record of Jisr al-Zarka (Israel). – Marine Geology,
http://dx.doi.org/10.1016/j.margeo.2017.07.008.
Vött, A., Brückner, H., May, M., Lang, F., Herd, R. & Brockmüller, S. (2008): Strong tsunami impact
on the Bay of Aghios Nikolaos and its environs (NW Greece) during Classical-Hellenistic times. – Qua-
ternary International 181: 105–122, https://doi.org/10.1016/j.quaint.2007.02.017.
Vött, A., Brückner, H., May, S.M., Sakellariou, D., Nelle, O., Lang, F., Kapsimalis, V., Jahns, S., Herd, R., Handl, M. & Fountoulis, I. (2009a): The Lake Voulkaria (Akarnania, NW Greece) pa- laeoenvironmental archive – a sediment trap for multiple tsunami impact since the mid-Holocene. – Zeitschrift für Geomorphologie N.F., Supplementary Issue 53 (1): 1–37, https://doi.org/10.1127/0372-
8854/2009/0053S1-0001.
Vött, A., Brückner, H., Brockmüller, S., Handl, M., May, S.M., Gaki-Papanastassiou, K., Herd, R.,
Lang, F., Maroukian, H., Nelle, O. & Papanastassiou, D. (2009b): Traces of Holocene tsunamis
across the Sound of Lefkada, NW Greece. – Global and Planetary Change 66: 112–128.
Vött, A., Lang, F., Brückner, H., Gaki-Papanastassiou, K., Maroukian, H., Papanastassiou, D., Gi- annikos, A., Hadler, H., Handl, M., Ntageretzis, K., Willershäuser, T. & Zander, A. (2011): Sedimentological and geoarchaeological evidence of multiple tsunamigenic imprint on the Bay of Palairos-Pogonia (Akarnania, NW Greece). – Quaternary International 242: 213–239, http://dx.doi.
org/10.1016/j.quaint.2010.11.002.
Vött, A., Hadler, H., Willershäuser, T., Ntageretzis, K., Brückner, H., Warnecke, H., Grootes,
P.M., Lang, F., Nelle, O. & Sakellariou, D. (2014): Ancient harbours used as tsunami sediment traps – the case study of Krane (Cefalonia Island, Greece). – In: Ladstätter, S., Pirson, F. & Schmidts, T. (Hrsg.): Häfen und Hafenstädte im östlichen Mittelmeerraum von der Antike bis in byzantinische Zeit. Neue Entdeckungen und aktuelle Forschungsansätze. – Harbors and harbor cities in the eastern Medi- terranean from Antiquity to the Byzantine Period: Recent discoveries and current approaches. – Byzas 19, Veröffentlichungen des Deutschen Archäologischen Instituts Istanbul, Österreichisches Archäolo- gisches Institut Sonderschriften 52, Volume II, 743–771, Istanbul.
Vött, A., Hadler, H., Koster, B., Mathes-Schmidt, M., Röbke, B.R., Willershäuser, T. & Reicher- ter, K. (2018): Returning to the facts: Response to the refusal of tsunami traces in the ancient harbour of Lechaion (Gulf of Coritnh, Greece) by non-catastrophists – New evidence of harbour destruction by historical earthquakes and tsunamis in AD 69–79 and the 6th cent. AD and a preceeding pre-historical event in the early 8th cent. BC. – Zeitschrift für Geomorphologie N.F., Supplementary Issue, https:// doi.org/10.1127/zfg/2018/0519.
Werner, V., Baika, K., Fischer, P., Hadler, H., Obrocki, L., Willershäuser, T., Tzigounaki, A., Tsig- kou, A., Reicherter, K., Papanikolaou, I., Emde, K. & Vött, A. (2017): The sedimentary and geo- morphological imprint of the AD 365 tsunami on the coasts of southwestern Crete (Greece) – Examples from Sougia and Palaiochora. – Quaternary International, http://dx.doi.org/10.1016/j.quaint.2017.07.016.
Wheatcroft, R.A. & Drake, D.E. (2003): Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. The role of episodic sedimentation. – Marine Geology 199: 123–137, http://dx.doi.org/10.1016/S0025-3227(03)00146-4.
Yolsal-Çevikbilen, S. & Taymaz, T. (2012): Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the eastern Mediterranean. – Tectonophysics 536–537: 61–100, http://dx.doi.org/10.1016/j.tecto.2012.02.019.
Ambraseys, N. N. (1960): The seismic sea wave of July 9, 1956, in the Greek Archipelago. – Journal of Geo- physical Research 65: 1257–1265.
Ambraseys, N. N. (2009): Earthquakes in the Mediterranean and Middle East. A multidisciplinary study of seismicity up to 1900. – Cambridge University Press, 947 pp., Cambridge.
Badertscher, S., Fleitmann, D., Cheng, H., Edwards, R. L., Göktürk, O. M., Zumbühl, A., Leuen- berger, M. & Tüysüz, O. (2011): Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. – Nature Geoscience 4: 236–239, http://dx.doi.org/10.1038/ngeo1106.
Baratta, M. (1910): La catastrofe sismica Calabro messinese (28 dicembre 1908). – Presso la Società geo- grafica italiana.
Biolchi, S., Furlani, S., Antonioli, F., Baldassini, N., Deguara, J. C., Devoto, S., Di Stefano, A., Evans, J., Gambin, T., Gauci, R., Mastronuzzi, G., Monaco, C. & Scicchitano, G. (2016): Boulder accumulations related to extreme wave events on the eastern coast of Malta. – Natural Hazards and Earth System Sciences 16: 737–756, http://dx.doi.org/10.5194/nhess-16-737-2016.
Bonaccorso, A., Calvari, S., Garfì, G., Lodato, L. & Patanè, D. (2003): Dynamics of the December 2002 flank failiure and tsunami at Stromboli volcano inferred by volcanological and geophysical observa- tions. – Geophysical Research Letters 30 (18): 1941, http://dx.doi.org/10.1029/2003GL017702.
Bronk Ramsey, C., Manning, S. W. & Galimberti, M. (2004): Dating the volcanic eruption at Thera. – Radiocarbon 46 (1): 325–344.Bruins, H. J., MacGillivray, J. A., Synolakis, C. E., Benjamini, C., Keller, J., Kisch, H. J., Klügel, A. & Van der Plicht, J. (2008): Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. – Journal of Archaeological Science 35 (1): 191–212.
Bruins, H. J. & van der Plicht, J. (2014): The Thera olive branch, Akrotiri (Thera) and Palaikastro (Crete): comparing radiocarbon results of the Santorini eruption. – Antiquity 88: 282–287.
Cita, M. B. & Rimoldi, B. (1997): Geological and geophysical evidence for a Holocene tsunami deposit in the eastern Mediterranean deep-sea record. – Journal of Geodynamics 24 (1–4): 293–304.
Cita, M. B., Camerlenghi, A. & Rimordi, B. (1996): Deep-sea tsunami deposits in the eastern Mediter- ranean: new evidence and depositional models. – Sedimentary Geology 104: 155–173, http://dx.doi. org/10.1016/0037-0738(95)00126-3.
Comerci, V., Vittori, E., Blumetti, A. M., Di Manna, P., Guerrieri, L., Lucarini, M. & Serva, L. (2015): Environmental effects of the December 28, 1908 Southern Calabria-Messina (Southern Italy) earth- quake. – Natural Hazards 76 (3): 1849–1891, http://dx.doi.org/10.1007/s11069-014-1573-x.
Davolio, S., Miglietta, M. M., Moscatello, A., Pacifico, F., Buzzi, A. & Rotunno, R. (2009): Nu- merical forecast and analysis of a tropical-like cyclone in the Ionian Sea. – Natural Hazards and Earth System Sciences 9: 551–562.
De Martini, P. M., Burrato, P., Pantosti, D., Maramai, A., Graziani, L. & Abramson, H. (2003): Iden- tification of tsunami deposits and liquefaction features in the Gargano area (Italy): paleoseismological implication. – Annals of Geophysics 46: 883–902.
De Martini, P. M., Barbano, M. S., Smedile, A., Gerardi, F., Pantosti, D., Del Carlo, P. & Pirrotta, C. (2010): A unique 4000 year long geological record of multiple tsunami inundations in the Augusta Bay (eastern Sicily, Italy). – Marine Geology 276: 42–57.
Dey, H. & Goodman-Tchernov, B. (2010): Tsunamis and the port of Caesarea Maritima over the longue durée: a geoarchaeological perspective. – Journal of Roman Archaeology 23: 265–284, https://doi. org/10.1017/S1047759400002397.
Dey, H., Goodman-Tchernov, B. & Sharvit, J. (2014): Archaeological evidence for the tsunami of January 18, A. D. 749: a chapter in the history of Early Islamic Qâysariyah (Caesarea Maritima). – Journal of
Roman Archaeology 27: 357–373, http://dx.doi.org/10.1017/S1047759414001287. nd Einsele, G. (2000): Sedimentary basins. Evolution, facies, and sediment budget. – 2
edition, 792 pp.,
Springer, Berlin/Heidelberg.
EM-DAT database (2017): The Emergency Events Database. Centre for Research on the Epidemiology of
Disaster, Université Catholique de Louvain (UCL), D. Guha-Sapir. – Brussels, Belgium, www.emdat.be
(last access: 2017/12/15).
Fago P., Pignatelli C., Piscitelli A., Milella M., Venerito M., Sansò P. & Mastronuzzi G. (2014):
The WebGIS on Italian tsunami: an useful reference tool. – Marine Geology 355: 369–376, http://
dx.doi.org/10.1016/j.margeo.2014.06.012.
Finkler, C., Fischer, P., Baika, K., Rigakou, D., Metallinou, G., Hadler, H. & Vött, A. (2017a): Trac-
ing the Alkinoos Harbor of ancient Kerkyra, Greece, and reconstructing its paleotsunami history. –
Geoarchaeology 33: 24–42,, https://doi.org/10.1002/gea.21609.
Finkler, C., Baika, K., Rigakou, D., Metallinou, G., Fischer, P., Hadler, H., Emde, K. & Vött, A.
(2017b): Geoarchaeological investigations of a prominent quay wall in ancient Corcyra – implications for harbour development, palaeoenvironmental changes and tectonic geomorphology of Corfu island (Ionian Islands, Greece). – Quaternary International, https://doi.org/10.1016/j.quaint.2017.05.013.
Fita, L., Romero, R., Luque, A., Emanuel, K. & Ramis, C. (2007): Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. – Natural Hazards and Earth System Sciences 7: 41–56.
Fu, L., Heidarzadeh, M., Cukur, D., Chiocci, F. L., Ridente, D., Gross, F., Bialas, J. & Krastel, S. (2017): Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strai, Southern Italy. – Geophysical Research Letters 10.1002/2017GL072647, http://dx.doi.org/10.1002/2017GL072647.
Gaki-Papanastassiou, K., Maroukian, H., Papanastassiou, D., Palyvos, N. & Lemeille, F. (2001): Geo- morphological study in the Lokrian coast of northern Evoikos Gulf (central Greece) and evidence of palaeoseismic destructions. – Rapports et Procès-verbaux des Réunions, Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée 36: 25.Galadini, F., Hinzen, K.-G. & Stiros, S. (2006): Archaeoseismology: Methodological issues and proce- dure. – Journal of Seismology 10: 395–414, http://dx.doi.org/10.1007/s10950-006-9027-x.
Galanopoulos, A. G. (1960): Tsunamis observed on the coasts of Greece from antiquity to present time. – Annali di Geofisica 13: 369–386.
Gerardi, F., Barbano, M. S., De Martini, P. M. & Pantosti, D. (2008): Discrimination of tsunami sources (earthquake versus landslide) on the basis of historical data in eastern Sicily and southern Calabria. – Bul- letin of the Seismological Society of America 98 (6): 2795–2805, http://dx.doi.org/10.1785/0120070192.
Gerardi, F., Smedile, A., Pirrotta, C., Barbano, M. S., De Martini, P. M., Pinzi, S., Gueli, A. M., Ris- tuccia, G. M., Stella, G. & Troja, O. (2012): Geological record of tsunami inundations in Pantano Morghella (south-eastern Sicily) both from near- and far-field sources. – Natural Hazards and Earth System Sciences 12: 1185–1200, http://dy.doi.org/10.5194/nhess-12-1185-2012.
Gianfreda, F., Mastronuzzi, G. & Sanso, P. (2001): Impact of historical tsunamis on a sandy coastal bar- rier: an example from the northern Gargano coast, southern Italy. – Natural Hazards and Earth System Sciences 1: 213–219.
Goded, T., Buforn, E. & Muñoz, D. (2008): The 1494 and 1680 Málaga (Southern Spain) Earthquakes. – Seismological Research Letters 79 (5): 707–715.
Gross, F., Krastel, S., Chiocci, F. L., Ridente, D., Bialas, J., Schwab, J., Beier, J., Cukur, D. & Win- kelmann, D. (2014): Evidence for submarine landslides offshore Mt. Etna, Italy. – In: Krastel, S., Behr- mann, J.-H., Völker, D., Stipp, M., Berdt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M. & Harbitz, C. B. (eds): Submarine mass movements and their consequences. – 6th international symposium. – Ad- vances in Natural and Technological Hazards Research 37: 307–316, https://link.springer.com/chap- ter/10.1007/978-3-319-00972-8_27.
Guidoboni, E., Comastri, A. & Traina, G. (1994): Catalogue of ancient earthquakes in the Mediterranean area up to the 10th century. – ING-SGA, Bologna,Volume 1, 504 pp.
Guidoboni, E. & Comastri, A. (1997): The large earthquake of 8 August 1303 in Crete: seismic scenario and tsunami in the Mediterranean area. – Journal of Seismology 1: 55–72.
Guidoboni, E. & Comastri, A. (2005): Catalogue of earthquakes and tsunamis in the Mediterranean area from the 11th to the 15th century. – Volume 2, 1037 pp., INGV-SGA, Bologna.
Hadler, H., Vött, A., Koster, B., Mathes-Schmidt, M., Mattern, T., Ntageretzis, K., Reicherter, K. & Willershäuser, T. (2013): Multiple late-Holocene tsunami landfall in the eastern Gulf of Corinth recorded in the palaeotsunami geo-archive at Lechaion, harbour of ancient Corinth (Peloponnese, Gre- ece). – Zeitschrift für Geomorphologie N. F., Supplementary Issue 57 (4): 139–180, http://dx.doi.org/10 .1127/0372-8854/2013/S-00138.
He, L., Xue, C., Ye, S., Laws, E. A., Yuan, H., Yang, S. & Du, X. (2017): Holocene evolution of the Liahoe Delta, a tide-dominated delta formed by multiple rivers in Northeast China. – Journal of Asian Earth Sciences 152: 52–68, http://dx.doi.org/10.1016/j.jseaes.2017.11.035.
He, M., Zhuo, H., Chen, W., Wang, Y., Du, J., Liu, L., Wang, L. & Wan, H. (2017): Sequence stratigraphy and depositional architecture of the pearl River Delta system, northern South China Sea: An interactive response to sea level, tectonics and paleoceanography. – Marine and Petroleum Geology 84: 76–101, http://dx.doi.org/10.1016/j.marpetgeo.2017.03.022.
Hoffmann, N., Master, D. & Goodman-Tchernov, B. (2018): Possible tsunami inundation identified amongst 4–5th century BCE archaeological deposits at Tel Ashkelon, Israel. – Marine Geology 396: 150–159, https://doi.org/10.1016/j.margeo.2017.10.009.
Ioualalen, M., Migeon, S. & Sardoux, O. (2010): Landslide tsunami vulnerability in the Ligurian Sea: case study of the October 16th 1979 Nice international airport submarine landslide and of identified geo- logical mass failures. – Geophysical Journal International 181: 724–740, http://dx.doi.org/10.1111/j.1365- 246X.2010.04572.x.
Kaniewski, D., Marriner, N., Morhange, C., Faivre, S., Otto, T. & Van Campo, E. (2016): Solar pac- ing of storm surges, coastal flooding and agricultural losses in the Central Mediterranean. – Scientific Reports 6: 25197, http://dx.doi.org/10.1038/srep25197.
Kastens, K. A. & Cita, M. B. (1981): Tsunami-induced sediment transport in the abyssal Mediterranean Sea. – Geological Society of America Bulletin 89: 591–604.Kelletat, D. (2005): Neue Beobachtungen zu Paläo-Tsunami im Mittelmeergebiet: Mallorca und Bucht von Alanya, türkische Südküste. – In: Beck, N. (Hrsg.): Neue Ergebnisse der Meeres- und Küstenfor- schung. – Beiträge der 23. Jahrestagung des Arbeitskreises „Geographie der Meere und Küsten“ (AMK), Koblenz, 28.–30. April 2005. – Schriften des Arbeitskreises Landes- und Volkskunde Koblenz (ALV) 4: 1–14.
Kelletat, D. (2013): Physische Geographie der Meere und Küsten. – 3 lag, Stuttgart.
rd
edition, 290 pp., Borntraeger-Ver-
14
Kelletat, D. & Schellmann, G. (2002): Tsunamis on Cyprus. Field evidences and C dating results. –
Zeitschrift für Geomorphologie N. F., Supplementary Issue 46: 19–34.
Kelly, G. (2004): Ammianus and the great tsunami. – The Journal of Roman Studies 94: 141–167.
Kolaiti, E., Papadopoulos, G. A., Morhange, C., Vacchi, M., Triantaphyllou, I. & Mourtzas, N. D.
(2017): Palaeoenvironmental evolution of the ancient harbor of Lechaion (Corinth Gulf, Greece): Were changes driven by human impacts and gradual coastal processes or catastrophic tsunamis? – Marine Geology 392: 105–121, http://dx.doi.org/10.1016/j.margeo.2017.08.004.
Kontopoulos, N. & Avramidis, P. (2003): A late Holocene record of environmental changes from the Aliki lagoon, Egion, North Peloponnesus, Greece. – Quaternary International 111: 75–90, https://doi. org/10.1016/S1040-6182(03)00016-8.
Kortekaas, S. (2002): Tsunamis, storms and earthquakes: Distinguishing coastal flooding events. – PhD Thesis, University of Coventry, Coventry.
Lagouvardos, K., Kotroni, V., Nickovic, S., Jovic, D., Kallos, G. & Tremback, C.J. (1999): Observa- tions and model simulations of a winter sub-synoptic vortex over the central Mediterranean. – Mete- orological Applications 6: 371–383.
Lario, J., Zazo, C., Goy, J.L., Silva, P.G., Bardaji, T., Cabero, A. & Dabrio, C.J. (2011): Holocene palaeot- sunami catalogue of SW Iberia. – Quaternary International 242 (1): 196–200.
Larson, D.R. (2007): Unitary systems and wavelet sets. – In: Qian, T., Vai, M.I. & Xu, Y. (eds): Wave- let analysis and applications. – Applied Numerical Harmonic Analysis, 143–171, Birkhäu- ser.
Lespez, L., Dalongeville, R., Pastre, J.-F., Darmon, F., Mathieu, R. & Poursoulis, G. (2003): Late- Middle-Holocene palaeo-environmental evolution and coastline changes of Malia (Crete). – In: Fouache, E. (ed.): The Mediterranean world. – Environment and history, 439–452, Elsevier.
Luque, L., Lario, J., Civis, J., Silva, P.G., Zazo, C., Goy, L.J. & Dabrio, C.J. (2002): Sedimentary record of a tsunami during Roman times, Bay of Cadiz, Spain. – Journal of Quaternary Science 17 (5–6): 623–631. Maramai, A., Graziani, L., Alessio, G., Burrato, P., Colini, L., Cucci, L., Nappi, R., Nardi, A. & Vilardo, G. (2005): Near- and far-field survey report of the 30 December 2002, Stromboli (Southern
Italy) tsunami. – Marine Geology 215: 93–106, http://dx.doi.org/10.1016/j.margeo.2004.11.009. Marriner, N., Kaniewski, D., Morhange, C., Flaux, C., Giaime, M., Vacchi, M. & Goff, J. (2017): Tsu- namis in the geological record: Making waves with a cautionary tale from the Mediterranean. – Science
Advances 3 (10): 31700485, http://dx.doi.org/10.1126/sciadv.1700485.
Mastronuzzi, G. & Sansò, P. (2000): Boulders transport by catastrophic waves along the Ionian coast of
Apulia (Southern Italy). – Marine Geology 170: 93–103, http://dx.doi.org/10.1016/S0025-3227(00)00068-
2.
Mastronuzzi, G. & Sansò, P. (2002): Holocene uplift rates and historical rapid sea-level changes at the
Gargano promontory, Italy. – Journal of Quaternary Science 17 (5–6): 593–606.
Mastronuzzi, G. & Sansò, P. (2004): Large boulder accumulations by extreme waves along the Adriatic coast of southern Apulia (Italy). – Quaternary International 120: 173–184, http://dx.doi.org/10.1016/j.
quaint.2004.01.016.
Mastronuzzi G. & Pignatelli C. (2012): The boulders berm of Punta Saguerra (Taranto, Italy): a mor-
phological imprint of the Rossano Calabro tsunami of April 24, 1836? – Earth Planets Space 64 (10):
829–842, http://dx.doi.org/10.5047/eps.2011.08.018.
Mastronuzzi, G. & Sansò, P. (2012): The role of large earthquakes and tsunami in the Late Holocene evo-
lution of Fortore River coastal plain (Apulia, Italy): a synthesis. – Geomorphology 138: 89–99, http:// dx.doi.org/10.1016/j.geomorph.2011.08.027.Mastronuzzi, G., Pignatelli, C. & Sansò, P. (2006): Boulder Fields: A Valuable Morphological Indicator of Paleotsunami in the Mediterranean Sea. – Zeitschrift für Geomorphologie N.F., Supplementary Issue 146: 173–194.
Mastronuzzi, G., Pignatelli, C., Sansò, P. & Selleri, G. (2007): Boulder accumulations produced by the 20th February 1743 tsunami along the coast of southeastern Salento (Apulia region, Italy). – Marine Geology 242: 191–205, http://dx.doi.org/10.1016/j.margeo.2006.10.025.
Mathes-Schmidt, M., Schwarzbauer, J., Papanikolaou, I., Syberberg, F., Thiele, A., Wittkopp, F. & Reicherter, K. (2013): Geochemical and micropalaeontological investigations of tsunamigenic layers along the Thracian Coast (Northern Aegean Sea, Greece). – Zeitschrift für Geomorphologie N.F., Sup- plementary Issue 57 (4): 5–27, https://doi.org/10.1127/0372-8854/2013/S-00153.
Maouche, S., Morhange, C. & Meghraoui, M. (2009): Large boulder accumulation on the Algerian coast evidence tsunami events in the Western Mediterranean. – Marine Geology 262: 96–104, http://dx.doi. org/10.1016/j.margeo.2009.03.013.
May, S.M., Vött, A., Brückner, H. & Smedile, A. (2012): The Gyra washover fan in the Lefkada Lagoon, NW Greece – possible evidence of the 365 AD Crete earthquake and tsunami. – Earth, Planets and Space 64: 859–874, https://doi.org/10.5047/eps.2012.03.007.
McCoy, F.W. & Heiken, G. (2000): Tsunami generated by the Late Bronze Age eruption of Thera (San- torini), Greece. – Pure Applied Geophysics 157: 1227–1256.
Middleton, G.V. (1973): Johannes Walther’s law of the correlation of facies. – Bulletin of the Geological Society of America 84: 979–987.
Minoura, K., Imamura, F., Kuran, U., Nakamura, T., Papadopoulos, G.A., Takahashi, T. & Yalciner, A.C. (2000): Discovery of Minoan tsunami deposits. – Geology 28 (1): 59–62.
Morhange, C., Marriner, N. & Pirazzoli, P.A. (2006): Evidence of late-Holocene tsunami events in Lebanon. – Zeitschrift für Geomorphologie N.F., Supplementary Issue 146: 81–95.
Morelli, A., Bruno, L., Cleveland, D.M., Drexler, T.M. & Amorosi, A. (2017): Reconstructing Last Glacial Maximum and Younger Dryas paleolandscape through subsurface paleosol stratigraphy: An example from the Po coastal plain, Italy. – Geomorphology 295: 790–800, http://dx.doi.org/10.1016/j. geomorph.2017.08.013.
Morton, R.A., Gelfenbaum, G. & Jaffe, B.E. (2007): Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. – Sedimentary Geology 200: 184–207.
NOAA NGDC/WDS database (2017): NGDC/WDS Global Historical Tsunami Database published by the National Centers for Environmental Information of the U.S. – National Oceanic and Atmospheric Ad- ministration, formerly National Geophysical Data Center, http://dx.doi.org/10.7289/V5PN93H7 (last access 2017/12/15).
Papadopoulos, G.A. & Chalkis, B.J. (1984): Tsunamis observed in Greece and the surrounding area from antiquity up to the present times. – Marine Geology 56: 309–317, http://dx.doi.org/10.1016/0025- 3227(84)90022-7.
Pareschi, M.T., Boschi, E., Mazzarini, F. & Favalli, M. (2006): Large submarine landslides offshore Mt. Etna. – Geophysical Research Letters 33: L13302.
Pennington, B.T., Sturt, F., Wilson, P., Rowland, J. & Brown, A.G. (2017): The fluvial evolution of the Holocene Nile Delta. – Quaternary Science Reviews 170: 212–231, http://dx.doi.org/j.quasci- rev.2017.06.017.
Períañez, R. & Abril, J.M. (2014): Modelling tsunamis in the Eastern Mediterranean Sea. Application to the Minoan Santorini tsunami sequence as a potential scenario for the biblical Exodus. – Journal of Marine Systems 139: 91–102, http://dx.doi.org/doi:10.1016/j.jmarsys.2014.05.016.
Pirazzoli, P.A., Stiros, S.C., Arnold, M., Laborel, J. & Laborel-Deguen, F. (1999): Late Holocene coseismic vertical displacement and tsunami deposits near Kynos, Golf of Euboea, central Greece. – Physics and Chemistry of the Earth (A) 24 (4): 361–367.
Platania, G. (1909): Il maremoto dello stretto di Messina del 28 dicembre 1908. – Societá tipografica modenese.
Presti, D., Neri, G., Orecchio, B., Scolaro, S. & Totaro, C. (2017): The 1905 Calabria, southern Italy, earthquake: hypocenter location, causative process, and stress changes induced in the area of the 1908 Messina Straits earthquake. – Bulletin of the Seismological Society of America 107 (6): 2613–2623, http://dx.doi.org/10.1785/0120170094.Reicherter, K. & Hübscher, C. (2006): Off-shore evidence for the 1522 Almería earthquake (M > 6.5) in the Alborán Sea (southern Spain). – Journal of Seismology 11: 15–26, http://dx.doi.org/10.1007/s10950- 006-9024-0.
Reicherter, K. & Becker-Heidmann, P. (2009): Tsunami deposits in the western Mediterranean: Re- mains of the 1522 Almería Earthquake? – In: Reicherter, K., Michetti, A.M. & Silva, P.G. (eds): Paleoseismology: Historical and prehistorical records of earthquake ground effects for seismic hazard assessment. – Journal of the Geological Society London, Special Publication 316: 217–235.
Reicherter, K., Papanikolaou, I., Roger, J., Mathes-Schmidt, M., Papanikolaou, D., Rössler, S., Grützner, Ch. & Stamatis, G. (2010): Holocene tsunamigenic sediments and tsunami modelling in the Thermaikos Gulf area (northern Greece). – Zeitschrift für Geomorphologie N.F., Supplementary Issue 54 (3): 99–126, https://doi.org/10.1127/0372-8854/2010/0054S3-0021.
Reineck, H.-E. & Singh, I.B. (1980): Depositional sedimentary environments. With reference to terrig- enous clastics. – Springer, 2nd edition, 551 pp., Berlin/Heidelberg/New York.
Reinhardt, E.G., Goodman, B.N., Boyce, J.I., Lopez, G., van Henstum, P., Rink, W.J., Mart, Y. & Ra- ban, A. (2006): The tsunami of 13 December A.D. 115 and the destruction of Herod the Great’s harbor at Caesarea Maritima, Israel. – Geology 34 (12): 1061–1064.
Röbke, B.R. & Vött, A. (2017): The tsunami phenomenon. – Progress in Oceanography 159: 296–322, http://dx.doi.org/10.1016/j.pocean.2017.09.003.
Röbke, B.R., Schüttrumpf, H. & Vött, A. (2018): Hydro- and morphodynamic tsunami simulations for the Ambrakian Gulf (Greece) and comparison with geoscientific field traces. – Geophysical Journal International 213: 317–339, http://dx.doi.org/10.1093/gji/ggx553.
Rolfe, J.C. (1940): Ammianus Marcellinus, History, Volume II, Books 20–26, Translation by J.C. Rolfe. – Loeb Classical Library 315, Harvard University Press.
Sabatier, P., Dezileau, L., Colin, C., Briqueu, L., Bouchette, F., Martinez, P., Siani, G., Raynal, O. & von Grafenstein, U. (2012): 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events. – Quaternary Research 77 (1): 1–11, http://dx.doi.org/10.1016/j. yqres.2011.09.002.
Sahal, A., Roger, J., Allgeyer, S., Lemaire, B., Hébert, H., Scheindelé, F. & Lavigne, F. (2009): The tsunami triggered by the 21 May 2003 Boumerdès-Zemmouro (Algeria) earthquake: field investiga- tions on the French Mediterreanean coast and tsunami modeling. – Natural Hazards and Earth System Sciences 9: 1823–1834.
Shah-Hosseini, M., Morhange, C., De Marco, A., Wante, J., Anthony, E.J., Sabatier, F., Mastro- nuzzi, G., Pignatelli, C. & Piscitelli, A. (2013): Coastal boulders in Martigues, French Mediterra- nean: evidence for extreme storm waves during the Little Ice Age. – Zeitschrift für Geomorphologie N.F., Supplementary Issue 57 (4): 181–199.
Shaw, B., Ambrayses, N.N., England, P.C., Floyd, M.A., Gorman, G.J., Highham, T.F.G., Jackson, J.A., Nocquet, J.-M., Pain, C.C. & Piggott, M.D. (2008): Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. – Nature Geoscience, http://www.nature.com/doi- finder/10.1038/ngeo151.
Sintubin, M. (2011): Archaeoseismology: Past, present and future. – Quaternary International 242: 4–10, http://dx.doi.org/10.1016/j.quaint.2011.03.056.
Smedile, A., De Martini, P.M., Pantosti, D., Bellucci, L., Del Carlo, P., Gasperini, L., Pirrotta, C., Polonia, A. & Boschi, E. (2011): Possible tsunami signatures from an integrated study in the Augusta Bay offshore (Eastern Sicily – Italy). – Marine Geology 281: 1–13.
Smith, C.F. (1921): Thucydides. History of the Peloponnesian War. – Volume III, Books 5–6, Translation by C.F. Smith, Loeb Classical Library 110.
Soloviev, S.L. (1990): Tsunamigenic zones in the Mediterranean Sea. – Natural Hazards 3: 183–202. Soloviev, S.L., Solovieva, O.N., Go, C.N., Kim, K.S. & Shchetnikov, N.A. (2000): Tsunamis in the Medi-
terranean Sea 2000 B.C. – 2000 A.D. – Kluwer, 237 pp., Dordrecht.
Spiske, M., Piepenbreier, J., Benavente, C. & Bahlburg, H. (2013): Preservation potential of tsunami
deposits on arid siliciclastic coasts. – Earth Science Reviews 126: 58–73, http://dx.doi.org/10.1016/j.ear- scirev.2013.07.009.Szczuciński, W. (2012): The post-depositional changes of the onshore 2004 tsunami deposits on the Anda- man Sea coast of Thailand. – Natural Hazards 60: 115–133, http://dx.doi.org/10.1007/s11069-011-9956-8.
Tappin, D.R. (2017): Tsunamis from submarine landslides. – Geology Today 33 (5): 190–200.
Thomas, R., Parker, S.T. & Niemi, T.M. (2007): Structural damage from earthquakes in the second-ninth centuries at the archaeological site of Aila in Aqaba, Jordan. – Bulletin of the American Schools of Ori-
ental Research 346: 59–77, http://www.jstor.org/stable/25067010.
Tyuleneva, N., Braun, Y., Katz, T., Suchkov, I. & Goodman-Tchernov, B. (2017): A new chalcolithic-era
tsunami event identified in the offshore sedimentary record of Jisr al-Zarka (Israel). – Marine Geology,
http://dx.doi.org/10.1016/j.margeo.2017.07.008.
Vött, A., Brückner, H., May, M., Lang, F., Herd, R. & Brockmüller, S. (2008): Strong tsunami impact
on the Bay of Aghios Nikolaos and its environs (NW Greece) during Classical-Hellenistic times. – Qua-
ternary International 181: 105–122, https://doi.org/10.1016/j.quaint.2007.02.017.
Vött, A., Brückner, H., May, S.M., Sakellariou, D., Nelle, O., Lang, F., Kapsimalis, V., Jahns, S., Herd, R., Handl, M. & Fountoulis, I. (2009a): The Lake Voulkaria (Akarnania, NW Greece) pa- laeoenvironmental archive – a sediment trap for multiple tsunami impact since the mid-Holocene. – Zeitschrift für Geomorphologie N.F., Supplementary Issue 53 (1): 1–37, https://doi.org/10.1127/0372-
8854/2009/0053S1-0001.
Vött, A., Brückner, H., Brockmüller, S., Handl, M., May, S.M., Gaki-Papanastassiou, K., Herd, R.,
Lang, F., Maroukian, H., Nelle, O. & Papanastassiou, D. (2009b): Traces of Holocene tsunamis
across the Sound of Lefkada, NW Greece. – Global and Planetary Change 66: 112–128.
Vött, A., Lang, F., Brückner, H., Gaki-Papanastassiou, K., Maroukian, H., Papanastassiou, D., Gi- annikos, A., Hadler, H., Handl, M., Ntageretzis, K., Willershäuser, T. & Zander, A. (2011): Sedimentological and geoarchaeological evidence of multiple tsunamigenic imprint on the Bay of Palairos-Pogonia (Akarnania, NW Greece). – Quaternary International 242: 213–239, http://dx.doi.
org/10.1016/j.quaint.2010.11.002.
Vött, A., Hadler, H., Willershäuser, T., Ntageretzis, K., Brückner, H., Warnecke, H., Grootes,
P.M., Lang, F., Nelle, O. & Sakellariou, D. (2014): Ancient harbours used as tsunami sediment traps – the case study of Krane (Cefalonia Island, Greece). – In: Ladstätter, S., Pirson, F. & Schmidts, T. (Hrsg.): Häfen und Hafenstädte im östlichen Mittelmeerraum von der Antike bis in byzantinische Zeit. Neue Entdeckungen und aktuelle Forschungsansätze. – Harbors and harbor cities in the eastern Medi- terranean from Antiquity to the Byzantine Period: Recent discoveries and current approaches. – Byzas 19, Veröffentlichungen des Deutschen Archäologischen Instituts Istanbul, Österreichisches Archäolo- gisches Institut Sonderschriften 52, Volume II, 743–771, Istanbul.
Vött, A., Hadler, H., Koster, B., Mathes-Schmidt, M., Röbke, B.R., Willershäuser, T. & Reicher- ter, K. (2018): Returning to the facts: Response to the refusal of tsunami traces in the ancient harbour of Lechaion (Gulf of Coritnh, Greece) by non-catastrophists – New evidence of harbour destruction by historical earthquakes and tsunamis in AD 69–79 and the 6th cent. AD and a preceeding pre-historical event in the early 8th cent. BC. – Zeitschrift für Geomorphologie N.F., Supplementary Issue, https:// doi.org/10.1127/zfg/2018/0519.
Werner, V., Baika, K., Fischer, P., Hadler, H., Obrocki, L., Willershäuser, T., Tzigounaki, A., Tsig- kou, A., Reicherter, K., Papanikolaou, I., Emde, K. & Vött, A. (2017): The sedimentary and geo- morphological imprint of the AD 365 tsunami on the coasts of southwestern Crete (Greece) – Examples from Sougia and Palaiochora. – Quaternary International, http://dx.doi.org/10.1016/j.quaint.2017.07.016.
Wheatcroft, R.A. & Drake, D.E. (2003): Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. The role of episodic sedimentation. – Marine Geology 199: 123–137, http://dx.doi.org/10.1016/S0025-3227(03)00146-4.
Yolsal-Çevikbilen, S. & Taymaz, T. (2012): Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the eastern Mediterranean. – Tectonophysics 536–537: 61–100, http://dx.doi.org/10.1016/j.tecto.2012.02.019.
Type
article
File(s)
Loading...
Name
Vottetal_Zeitschrift_für_Geomorphologie_2018.pdf
Size
1.04 MB
Format
Adobe PDF
Checksum (MD5)
00542b36676554d26c40729cdcb79c76