Earthquake magnitude estimation from early radiated energy
Language
English
Obiettivo Specifico
4.1. Metodologie sismologiche per l'ingegneria sismica
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Journal
Issue/vol(year)
/35(2008)
Publisher
American Geophysical Union
Pages (printed)
L22307
Date Issued
November 27, 2008
Abstract
From inspection of a large set of Japanese events, we
investigate the scaling of the early radiated energy, inferred
from the squared velocity integral (IV2) with the final
magnitude of the event. We found that the energy can only
discriminate whether the event has a magnitude larger or
smaller than 5.8, and in the latter case it can allow for realtime
magnitude estimation. However, by normalizing IV2
for the rupture area, the initial slip scales with the magnitude
between 4 < M < 7 following the expected scaling laws. We
show that the ratio between the squared peak displacement
and IV2 is a proxy for the slip following the same scaling
but it can be directly derived from the data, without any
assumption on the rupture area. The scaling relationship
between initial slip and magnitude can be used for early
warning applications, when integrated in a probabilistic,
evolutionary approach. Citation: Festa, G., A. Zollo, and M.
Lancieri (2008), Earthquake magnitude estimation from early
radiated energy, Geophys. Res. Lett., 35, L22307, doi:10.1029/
2008GL035576.
investigate the scaling of the early radiated energy, inferred
from the squared velocity integral (IV2) with the final
magnitude of the event. We found that the energy can only
discriminate whether the event has a magnitude larger or
smaller than 5.8, and in the latter case it can allow for realtime
magnitude estimation. However, by normalizing IV2
for the rupture area, the initial slip scales with the magnitude
between 4 < M < 7 following the expected scaling laws. We
show that the ratio between the squared peak displacement
and IV2 is a proxy for the slip following the same scaling
but it can be directly derived from the data, without any
assumption on the rupture area. The scaling relationship
between initial slip and magnitude can be used for early
warning applications, when integrated in a probabilistic,
evolutionary approach. Citation: Festa, G., A. Zollo, and M.
Lancieri (2008), Earthquake magnitude estimation from early
radiated energy, Geophys. Res. Lett., 35, L22307, doi:10.1029/
2008GL035576.
References
Allen, R. M., and H. Kanamori (2003), The potential for earthquake early
warning in southern California, Science, 300, 5620, 786 – 789,
doi:10.1126/science.1080912.
Boatwright, J., and J. B. Fletcher (1984), The partition of radiated energy
between P and S waves, Bull. Seismil. Soc. Am., 74, 361– 376.
Festa, G., and A. Zollo (2006), Fault slip and rupture velocity inversion by
isochrone backprojection, Geophys. J. Int., 166, 745– 756.
Horiuchi, S., H. Negishi, K. Abe, A. Kamimura, and Y. Fujinawa (2005),
An automatic processing system for broadcasting earthquake alarms,
Bull. Seismol. Soc. Am., 95, 708– 718.
Kanamori, H., E. Hauksson, L. K. Hutton, and L. M. Jones (1993), Determination
of earthquake energy release and ML using TERRAscope, Bull.
Seismol. Soc. Am., 83, 330–346.
Lockman, A. B., and R. M. Allen (2005), Single-station earthquake characterization
for early warning, Bull. Seismol. Soc. Am., 95, 2029– 2039.
Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seismol.
Soc. Am., 66, 639– 666.
Mai, P. M., P. Spudich, and J. Boatwirght (2005), Hypocenter locations in
finite-source rupture models, Bull. Seismol. Soc. Am., 95, 965– 980.
Olson, D., and R. M. Allen (2005), The deterministic nature of earthquake
rupture, Nature, 438, 212– 215, doi:10.1038/nature04214.
Rydelek, P., and S. Horiuchi (2006), Is earthquake rupture deterministic?,
Nature, 442, E5–E6, doi:10.1038/nature04963.
Rydelek, P., C. Wu, and S. Horiuchi (2007), Comment on ‘‘Earthquake
magnitude estimation from peak amplitudes of very early seismic signals
on strong motion records’’ by Aldo Zollo, Maria Lancieri, and Stefan
Nielsen, Geophys. Res. Lett., 34, L20302, doi:10.1029/2007GL029387.
Scholz, C. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed.,
Cambridge Univ. Press, Cambridge, U. K.
Wesnousky, S. (2006), Predicting the endpoints of earthquake ruptures,
Nature, 444, 358–360, doi:10.1038/nature05275.
Wu, Y. M., and H. Kanamori (2005), Rapid assessment of damage potential
of earthquakes in Taiwan from the beginning of P waves, Bull. Seismol.
Soc. Am., 95, 1181–1185.
Wu, Y. M., and L. Zhao (2006), Magnitude estimation using the first three
seconds P-wave amplitude in earthquake early warning, Geophys. Res.
Lett., 33, L16312, doi:10.1029/2006GL026871.
Zollo, A., M. Lancieri, and S. Nielsen (2006), Predicting the earthquake
magnitude from peak amplitudes of very early seismic signals, Geophys.
Res. Lett., 33, L23312, doi:10.1029/2006GL027795.
Zollo, A., M. Lancieri, and S. Nielsen (2007), Reply to comment by
P. Rydelek et al. on ‘‘Earthquake magnitude estimation from peak amplitudes
of very early seismic signals on strong motion records’’, Geophys.
Res. Lett., 34, L20303, doi:10.1029/2007GL030560.
warning in southern California, Science, 300, 5620, 786 – 789,
doi:10.1126/science.1080912.
Boatwright, J., and J. B. Fletcher (1984), The partition of radiated energy
between P and S waves, Bull. Seismil. Soc. Am., 74, 361– 376.
Festa, G., and A. Zollo (2006), Fault slip and rupture velocity inversion by
isochrone backprojection, Geophys. J. Int., 166, 745– 756.
Horiuchi, S., H. Negishi, K. Abe, A. Kamimura, and Y. Fujinawa (2005),
An automatic processing system for broadcasting earthquake alarms,
Bull. Seismol. Soc. Am., 95, 708– 718.
Kanamori, H., E. Hauksson, L. K. Hutton, and L. M. Jones (1993), Determination
of earthquake energy release and ML using TERRAscope, Bull.
Seismol. Soc. Am., 83, 330–346.
Lockman, A. B., and R. M. Allen (2005), Single-station earthquake characterization
for early warning, Bull. Seismol. Soc. Am., 95, 2029– 2039.
Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seismol.
Soc. Am., 66, 639– 666.
Mai, P. M., P. Spudich, and J. Boatwirght (2005), Hypocenter locations in
finite-source rupture models, Bull. Seismol. Soc. Am., 95, 965– 980.
Olson, D., and R. M. Allen (2005), The deterministic nature of earthquake
rupture, Nature, 438, 212– 215, doi:10.1038/nature04214.
Rydelek, P., and S. Horiuchi (2006), Is earthquake rupture deterministic?,
Nature, 442, E5–E6, doi:10.1038/nature04963.
Rydelek, P., C. Wu, and S. Horiuchi (2007), Comment on ‘‘Earthquake
magnitude estimation from peak amplitudes of very early seismic signals
on strong motion records’’ by Aldo Zollo, Maria Lancieri, and Stefan
Nielsen, Geophys. Res. Lett., 34, L20302, doi:10.1029/2007GL029387.
Scholz, C. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed.,
Cambridge Univ. Press, Cambridge, U. K.
Wesnousky, S. (2006), Predicting the endpoints of earthquake ruptures,
Nature, 444, 358–360, doi:10.1038/nature05275.
Wu, Y. M., and H. Kanamori (2005), Rapid assessment of damage potential
of earthquakes in Taiwan from the beginning of P waves, Bull. Seismol.
Soc. Am., 95, 1181–1185.
Wu, Y. M., and L. Zhao (2006), Magnitude estimation using the first three
seconds P-wave amplitude in earthquake early warning, Geophys. Res.
Lett., 33, L16312, doi:10.1029/2006GL026871.
Zollo, A., M. Lancieri, and S. Nielsen (2006), Predicting the earthquake
magnitude from peak amplitudes of very early seismic signals, Geophys.
Res. Lett., 33, L23312, doi:10.1029/2006GL027795.
Zollo, A., M. Lancieri, and S. Nielsen (2007), Reply to comment by
P. Rydelek et al. on ‘‘Earthquake magnitude estimation from peak amplitudes
of very early seismic signals on strong motion records’’, Geophys.
Res. Lett., 34, L20303, doi:10.1029/2007GL030560.
Type
article
File(s)![Thumbnail Image]()
Loading...
Name
2008GL035576.pdf
Size
263.82 KB
Format
Adobe PDF
Checksum (MD5)
bb47dba00ed3bd710d5293fc4ae71e70