Now showing 1 - 3 of 3
  • Publication
    Open Access
    Fast Changes in Seismic Attenuation of the Upper Crust due to Fracturing and Fluid Migration: The 2016–2017 Central Italy Seismic Sequence
    The Amatrice–Visso–Norcia seismic sequence struck Central Italy across the Apenninic normal fault system in 2016. Fluids likely triggered the sequence and reduced the stability of the fault network following the first earthquake (Amatrice, Mw 6.0), with their migration nucleating the Visso (Mw 5.9) and Norcia (Mw 6.5) mainshocks. However, both spatial extent and mechanisms of fluid migration and diffusion through the network remain unclear. High fluid content, enhanced permeability, and pervasive microcracking increase seismic attenuation, but different processes contribute to different attenuation mechanisms. Here, we measured and mapped peak delay time and coda attenuation, using them as proxies of seismic scattering and absorption before and during the sequence. We observed that the structural discontinuities and lithology control the scattering losses at all frequencies, with the highest scattering delineating carbonate formations within the Gran Sasso massif. The Monti Sibillini thrust marks the strongest contrasts in scattering, indicating a barrier for northward fracture propagation. Absorption does not show any sensitivity to the presence of these main geological structures. Before the sequence, low-frequency high-absorption anomalies distribute around the NW-SE-oriented Apennine Mountain chain. During the sequence, a high-absorption anomaly develops from SSE to NNW across the seismogenic zone but remains bounded north by the Monti Sibillini thrust. We attribute this spatial expansion to the deep migration of CO2-bearing fluids across the strike of the fault network from a deep source of trapped CO2 close to the Amatrice earthquake. Fluids expand SSE-NNW primarily during the Visso sequence and then diffuse across the fault zones during the Norcia sequence.
      322  33
  • Publication
    Restricted
    Ground-motion scaling in the Western Alps
    (2006) ; ; ; ; ;
    Morasca, P.; DIPTERIS, Universita’ di Genova,
    ;
    Malagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Akinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Spallarossa, D.; DIPTERIS, Universita’ di Genova,
    ;
    Herrmann, R. B.; Dept. of Earth and Atmo. Scie. of Saint Louis University
    ;
    ; ; ; ;
    In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events,MW ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996–2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2. The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q( f ) = 310 f 0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bilinear geometrical spreading seems to be more appropriate at higher frequencies (f > 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at Mw 4.8, we used σ = 50MPa. A regional distanceindependent attenuation parameter is obtained (κ0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes. In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory.
      333  37
  • Publication
    Restricted
    Separation of depth-dependent intrinsic and scattering seismic attenuation in the northeastern sector of the Italian Peninsula
    (2005) ; ; ; ; ;
    Bianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
    ;
    Del Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
    ;
    Malagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Di Luccio, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Akinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ;
    We investigated the intrinsic dissipation and scattering properties of the lithosphere under the Friuli region (northeastern Italy) using two hypotheses: (i) a uniform earth model and (ii) wo 'reasonable' non-uniform, layered crustal models. For case (i) we measured the coda Q, and used the multiple-lapse time window analysis (MLTWA) technique to obtain separate estimates of intrinsic absorption and scattering attenuation. Results for the uniform earth model show that the lithosphere in northeastern Italy is characterized by a low-scattering attenuation (small scattering Q-inverse, Q1s), and by a relatively high intrinsic attenuation (high intrinsic Q-inverse, Q1i). A comparison between the investigated region and other areas around the world shows that both Q1i and Q1s for the Friuli region are among the lowest values ever measured, with the exception of the southern Apennines, which has the lowest measured Q1s. For case (ii), numerical simulation of the energy envelopes was performed using two-layered earth models, where the values of the intrinsic and scattering attenuation coefficients are both within 'reasonable ranges' when compared with the geological information. The theoretical envelopes calculated for the homogeneous model give a good fit to the synthetic envelopes calculated for the layered models; the best fit is obtained for scattering attenuation coefficients of the uniform model always greater than those of the layered model. The main result is consequently that scattering Q1s obtained using the MLTWA under the assumption of a uniform medium is overestimated, on average, by a factor 2. Finally, coda Q1 appears to be closer to the total Q1 than to the intrinsic Q1i, as predicted by the theory.
      274  83