Options
Saroni, Anna
Loading...
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessShallow submarine mud volcano in the northern Tyrrhenian sea, Italy(2020-08-02)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Submarine methane emissions in the Tuscan Archipelago have been studied since the 1960s, both for economic and research purposes. Offshore gas seepage is mainly concentrated southward and westward of Elba island, along N–S faults related to recent extensional activity in the Tuscan shelf and N–S trending positive magnetic anomalies, which have been interpreted as serpentinites associated with ophiolitic rocks due to their very high magnetic susceptibility. This study focuses on the gas chemistry of a new emission site corresponding to a shallow water mud volcano in the Scoglio d’Affrica area. The Scoglio d’Affrica seep has a gas composition typical of mud volcanoes, with methane as the prevalent component (95 vol%) and minor gases which include carbon dioxide, nitrogen and trace amounts of helium. The combined stable C and H isotope composition of CH4 (δ13C and δ2H) and the enrichment in heavy carbon isotopes of CO2, highlight a prevalent secondary microbial origin for these fluids (δ13C~− 35.8‰ vs VPDB; δ2H~− 166‰ vs VSMOW; δ13CCO2 up to + 21.7‰ vs VPDB). Thus, in spite of the occurrence of positive magnetic anomalies, a possible abiotic origin of methane is excluded. Moreover, the gas from the mud volcano is extremely depleted in 3He and presents typical 3He/4He ratios of a geological setting in which radiogenic crustal helium is strongly predominant. A photo-mosaic of the mud volcano is also reported. A possible connection with other submarine methane emissions in the Tuscan Archipelago is limited to emissions located few kilometers from the Scoglio d’Affrica area. Recent emissions in the area suggest that gases similar in composition from distinct reservoirs, find their way to the surface from Eocene deposits in different time intervals and through different faults and fractures, placed along the Elba-Pianosa ridge.500 21 - PublicationRestrictedShallow submarine seep of abiotic methane from serpentinized peridotite off the Island of Elba, Italy(2019)
; ; ; ; ; ; ; ; ; ;; ;; ;; Abiotic methane (CH4) is today widely reported in gas seeps and hyperalkaline springs in ophiolites and peridotite massifs characterized by low temperature continental serpentinization. Origin and distribution of this gas have far reaching implications in microbiology, astrobiology and carbon cycle. We report an in-depth study of a recently described abiotic CH4 seep occurring in shallow seafloor along the western coast of Elba Island, Tyrrhenian Sea (Italy). The gas is characterized by stable C and H isotopic compositions of CH4 δ13C∼−18‰; δ2H∼−141‰) and a very low CO2 content that are typical of abiotic gas in continental ultramafic rock systems. Based on local geothermal gradients, the temperature of methane production is estimated to be below 100 °C. The isotope signature of methane is similar to that occurring in the Liguria region, about 200 km north of Elba Island, where the same ophiolite unit exposed. A mantle CO2 component, suggested by relatively high 3He/4He ratios, has likely acted as CH4 precursor. The reconstruction of the geological-structural setting of Elba ophiolite sequence highlighted that the seep occurs in correspondence with a faulted reverse limb of the antiform of the ophiolite unit. The gas bearing fault forms a contact between mafic and ultramafic serpentinized rocks, as typically observed in other continental seeps and springs related to ophiolites. Magmatic intrusions in the island may have contributed to the C feedstock of methane.515 4