Options
Lane, S. J.
Loading...
Preferred name
Lane, S. J.
Main Affiliation
5 results
Now showing 1 - 5 of 5
- PublicationRestrictedThe dynamics of slug trains in volcanic conduits: Evidence for expansion driven slug coalescence(2017-12-15)
; ; ; ; ; ; ; ;; ; ; ;; Strombolian volcanism is a ubiquitous form of activity, driven by the ascent and bursting of bubbles of slug morphology. Whilst considerable attention has been devoted to understanding the behaviour of individual slugs in this regime, relatively little is known about how inter-slug interactions modify flow conditions. Recently, we reported on high temporal frequency strombolian activity on Etna, in which the larger erupted slug masses were followed by longer intervals before the following explosion than the smaller bursts (Pering et al., 2015). We hypothesised that this behaviour arose from the coalescence of ascending slugs causing a prolonged lag before arrival of the next distinct bubble. Here we consider the potential importance of inter-slug interactions for the dynamics of strombolian volcanism, by reporting on the first study into the behaviour of trains of ascending gas slugs, scaled to the expansion rates in volcanic conduits. This laboratory analogue study illustrates that slugs in trains rise faster than individual slugs, and can be associated with aspects of co-current flow. The work also highlights that coalescence and inter-slug interactions play an important role in modulating slug train behaviour. We also report, for the first time, on slug coalescence driven by vertical expansion of the trailing slug, a process which can occur, even where the leading slug base ascent velocity is greater than that of the trailing slug.151 2 - PublicationOpen AccessViscous plugging can enhance and modulate explosivity of strombolian eruptions(2015-08-01)
; ; ; ; ; ; ; ;Del Bello, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Lane, S. J.; Lancaster University (UK) ;James, M.; Lancaster University (UK) ;Llewellin, E. W.; University of Durham (UK) ;Taddeucci, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Scarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Capponi, A.; Lancaster University (UK); ; ; ; ; ; Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a ‘viscous plug’, which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.345 123 - PublicationOpen AccessDynamics of mild strombolian activity on Mt. Etna(2015)
; ; ; ; ; ; ; ; ; ;Pering, T. D.; University of Sheffield, Dept. of Geography ;Tamburello, G.; DiSTeM, Università di Palermo ;McGonigle, A. J. S.; University of Sheffield, Dept. of Geography ;Aiuppa, A.; DiSTeM, Università di Palermo ;James, M. R.; Lancaster Environment Centre, Lancaster University ;Lane, S. J.; Lancaster Environment Centre, Lancaster University ;Sciotto, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia ;Cannata, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia ;Patanè, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; ; ; ; ; ; ; ; Here we report the first measurements of gas masses released during a rare period of strombolian activity at the Bocca Nuova crater, Mt. Etna, Sicily. UV camera data acquired for 195 events over an ≈27 minute period (27th July 2012) indicate erupted SO2 masses ranging from ≈0.1 to ≈14 kg per event, with corresponding total gas masses of ≈0.1 to 74 kg. Thus, the activity was characterised by more frequent and smaller events than typically associated with strombolian activity on volcanoes such as Stromboli. Events releasing larger measured gas masses were followed by relatively long repose periods before the following burst, a feature not previously reported on from gas measurement data. If we assume that gas transport within the magma can be represented by a train of rising gas pockets or slugs, then the high frequency of events indicates that these slugs must have been in close proximity. In this case the longer repose durations associated with the larger slugs would be consistent with interactions between adjacent slugs leading to coalescence, a process expedited close to the surface by rapid slug expansion. We apply basic modelling considerations to the measured gas masses in order to investigate potential slug characteristics governing the observed activity.We also cross correlated the acquired gas fluxes with contemporaneously obtained seismic data but found no relationship between the series in line with the mild form of manifest explosivity.506 342 - PublicationRestrictedThe thickness of the falling film of liquid around a Taylor bubble(2012-02-24)
; ; ; ; ; ;Llewellin, E. W.; University of Durham (UK) ;Del Bello, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Taddeucci, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Scarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Lane, S. J.; Lancaster University (UK); ; ; ; We present the results of laboratory experiments that quantify the physical controls on the thickness of the falling film of liquid around a Taylor bubble, when liquid–gas interfacial tension can be neglected. We find that the dimensionless film thickness l (the ratio of the film thickness to the pipe radius) is a function only of the dimensionless parameter Nf = rgD3/m, where r is the liquid density, g the gravitational acceleration, D the pipe diameter and m the dynamic viscosity of the liquid. For Nf 10, the dimensionless film thickness is independent of Nf with value l ≈ 0.33; in the interval 10 Nf 104, l decreases with increasing Nf; for Nf 104 film thickness is, again, independent of Nf with value l ≈ 0.08. We synthesize existing models for films falling down a plane surface and around a Taylor bubble, and develop a theoretical model for film thickness that encompasses the viscous, inertial and turbulent regimes. Based on our data, we also propose a single empirical correlation for l(Nf), which is valid in the range 10−1 < Nf < 105. Finally, we consider the thickness of the falling film when interfacial tension cannot be neglected, and find that film thickness decreases as interfacial tension becomes more important.484 83 - PublicationRestrictedAn analytical model for gas overpressure in slug-driven explosions: Insights into Strombolian volcanic eruptions(2012-02-10)
; ; ; ; ; ;Del Bello, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Llewellin, E. W.; University of Durham ;Taddeucci, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Scarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Lane, S.; Lancaster University; ; ; ; Strombolian eruptions, common at basaltic volcanoes, are mildly explosive events that are driven by a large bubble of magmatic gas (a slug) rising up the conduit and bursting at the surface. Gas overpressure within the bursting slug governs explosion dynamics and vigor and is the main factor controlling associated acoustic and seismic signals. We present a theoretical investigation of slug overpressure based on magma-static and geometric considerations and develop a set of equations that can be used to calculate the overpressure in a slug when it bursts, slug length at burst, and the depth at which the burst process begins. We find that burst overpressure is controlled by two dimensionless parameters: V′, which represents the amount of gas in the slug, and A′, which represents the thickness of the film of magma that falls around the rising slug. Burst overpressure increases nonlinearly as V′ and A′ increase. We consider two eruptive scenarios: (1) the “standard model,” in which magma remains confined to the vent during slug expansion, and (2) the “overflow model,” in which slug expansion is associated with lava effusion, as occasionally observed in the field. We find that slug overpressure is higher for the overflow model by a factor of 1.2–2.4. Applying our model to typical Strombolian eruptions at Stromboli, we find that the transition from passive degassing to explosive bursting occurs for slugs with volume >24–230 m3, depending on magma viscosity and conduit diameter, and that at burst, a typical Strombolian slug (with a volume of 100–1000 m3) has an internal gas pressure of 1–5 bars and a length of 13–120 m. We compare model predictions with field data from Stromboli for low-energy “puffers,” mildly explosive Strombolian eruptions, and the violently explosive 5 April 2003 paroxysm. We find that model predictions are consistent with field observations across this broad spectrum of eruptive styles, suggesting a common slug-driven mechanism; we propose that paroxysms are driven by unusually large slugs (large V′).310 26