Options
Abdu, Mangalathayil Ali
Loading...
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessChallenges to Equatorial Plasma Bubble and Ionospheric Scintillation Short-Term Forecasting and Future Aspects in East and Southeast Asia(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Equatorial plasma bubbles (EPBs) can cause rapid fluctuations in amplitude and phase of radio signals traversing the ionosphere and in turn produce serious ionospheric scintillations and disrupt satellite-based communication links. Whereas numerous studies on the generation and evolution of EPBs have been performed, the prediction of EPB and ionospheric scintillation occurrences still remains unresolved. The generalized Rayleigh–Taylor (R–T) instability has been widely accepted as the physical mechanism responsible for the generation of EPBs. But how the factors, which seed the development of R–T instability and control the dynamics of EPBs and resultant ionospheric scintillations, change on a short-term basis are not clear. In the East and Southeast Asia, there exist significant differences in the generation rates of EPBs at closely located stations, for example, Kototabang (0.2°S, 100.3°E) and Sanya (18.3°N, 109.6°E), indicating that the decorrelation distance of EPB generation is small (hundreds of kilometers) in longitude. In contrast, after the initial generation of EPBs at one longitude, they can drift zonally more than 2000 km and extend from the magnetic equator to middle latitudes of 40° or higher under some conditions. These features make it difficult to identify the possible seeding sources for the EPBs and to accurately predict their occurrence, especially when the onset locations of EPBs are far outside the observation sector. This paper presents a review on the current knowledge of EPBs and ionospheric scintillations in the East and Southeast Asia, including their generation mechanism and occurrence morphology, and discusses some unresolved issues related to their short-term forecasting, including (1) what factors control the generation of EPBs, its day-to-day variability and storm-time behavior, (2) what factors control the evolution and lifetime of EPBs, and (3) how to accurately determine ionospheric scintillation from EPB measurements. Special focus is given to the whole process of the EPB generation, development and disruption. The current observing capabilities, future new facilities and campaign observations in the East and Southeast Asia in helping to better understand the short-term variability of EPBs and ionospheric scintillations are outlined.161 79 - PublicationOpen AccessAtypical nighttime spread-F structure observed near the southern crest of the ionospheric equatorial ionization anomaly(2012-04-07)
; ; ; ; ; ; ; ; ; ; ; ; ;Fagundes, P. R. ;Bittencourt, J. A. ;Abreu, A. J. ;Moor, L. P. ;Muella, M. T. A. H. ;Sahai, Y. ;Abalde, J. R. ;Pezzopane, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Sobral, J. H. A. ;Abdu, M. A. ;Pimenta, A. A. ;Amorim, D. C. M. ; ; ; ; ; ; ;; ; ; ;An atypical nighttime spread-F structure is observed on ionograms at or above the F2 trace, near the crest of the ionospheric equatorial ionization anomaly (EIA) region. This ionospheric atypical spread-F phenomenon was observed using two closed spaced( 115 km) ionospheric soundings stations located in Sao Jose dos Campos (23.21 S, 45.97 W) and Cachoeira Paulista (22.70 S, 45.01 W), Brazil, in a low-latitude station (near the southern crest of the EIA region), during nighttime, low solar activity, and quiet geomagnetic conditions. This structure, in the initial phase, appears in the ionogram as a faint spread-F trace above or at the F2-layer peak height. After a few minutes, it develops into a strong spread-F trace, and afterwards, it moves to altitudes below the F2-layer peak heights. Finally, the atypical nighttime F-layer trace structure may remain for a while between the F-layer bottom side and peak height or can move to an altitude above the F-layer peak height, and then it disappears. In order to have a comprehensive view of the ionospheric environment characterizing the phenomenon under study, complementary data from six GPS station were used to investigate the ionosphere environment conditions, during both events. The six GPS stations used in this study are distributed from near the equatorial region to low latitudes and provide evidence that the atypical nighttime spread-F structures are not related with large scale equatorial irregularities (plasma bubbles).382 271