Options
Gamberi, F.
Loading...
Preferred name
Gamberi, F.
11 results
Now showing 1 - 10 of 11
- PublicationRestrictedDistal Turbidites and Tsunamigenic Landslides of Stromboli Volcano (Aeolian Islands, Italy)(2010)
; ; ; ; ; ;Di Roberto, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Rosi, M.; Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy ;Bertagnini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Marani, M. P.; Istituto di Scienze Marine - CNR, Sede di Geologia Marina di Bologna, Bologna, Italy ;Gamberi, F.; Istituto di Scienze Marine - CNR, Sede di Geologia Marina di Bologna, Bologna, Italy; ; ; ; ; ; ; ; ; ; ; ; ;Mosher, D. C.; Geological Survey of Canada, Natural Resources Canada - Bedford Institute of Oceanography, Nova Scotia, Canada ;Shipp, R. C.; Shell International E & P Inc. Houston, TX, USA ;Moscardelli, L.; Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, TX, USA ;Chaytor, J. D.; United States Geological Survey, Woods Hole Science Center, Woods Hole, MA, USA ;Baxter, C. D. P.; Departments of Ocean/Civil and Environmental Engineering, Narragansett Bay Campus, Unversity of Rhode Island ;Lee, H. J.; U. S. Geological Survey, CA, USA ;Urgeles, R.; Departament d'Estratigrafi a, Paleontologia iGeociències Marines, Facultat de Geologia, Universitat de Barcelona, Martì i Franquès, Barcelona, Catalonia, Spain; ; ; ; ; ; On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.170 22 - PublicationRestrictedSubaqueous density flow processes and deposits of an island volcano landslide (Stromboli Island, Italy)(2009-08)
; ; ; ; ; ;Marani, M. P.; Istituto di Scienze Marine – CNR, Sede di Geologia Marina di Bologna, Bologna, Italy ;Gamberi, F.; Istituto di Scienze Marine – CNR, Sede di Geologia Marina di Bologna, Bologna, Italy ;Rosi, M.; Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy ;Bertagnini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Di Roberto, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; ; ; ; Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.163 20 - PublicationRestrictedDistal Turbidites and Tsunamigenic Landslides of Stromboli Volcano (Aeolian Islands, Italy)(2009)
; ; ; ; ; ;Di Roberto, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Rosi, M.; University of Pisa, Dipartimento di Scienze della Terra, Pisa, Italy ;Bertagnini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Marani, M. P.; Istituto di Scienze Marine - CNR, Sede di Geologia Marina di Bologna, Bologna, Italy ;Gamberi, F.; Istituto di Scienze Marine - CNR, Sede di Geologia Marina di Bologna, Bologna, Italy; ; ; ; ; ; ; ; ; ; ; ; ;Mosher, D. C.; Natural Resources Canada, Dartmouth, NS, Canada ;Shipp, R. C.; Shell International Exploration and Production Inc., Houston, TX, USA ;Moscardelli, L.; University of Texas at Austin, TX, USA ;Chaytor, J. D.; Woods Hole Oceanographic Institution, Woods Hole, MA, USA ;Baxter, C. D. P.; University of Rhode Island, Narragansett, RI, USA ;Lee, H. J.; United States Geological Survey, Menlo Park, CA, USA ;Urgeles, R.; Institute of Marine Sciences, Spanish National Research Council (CSIC); ; ; ; ; ; On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.183 31 - PublicationRestrictedDeep water gravity core from the Marsili Basin (Tyrrhenian Sea) records Pleistocenic–Holocenic explosive events and instability of the Aeolian Archipelago(2008-10-20)
; ; ; ; ; ; ;Di Roberto, A.; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italia; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italia ;Rosi, M.; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italia ;Bertagnini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Marani, M. P.; ISMAR, CNR, Bologna, Italia ;Gamberi, F.; ISMAR, CNR, Bologna, Italia ;Del Principe, A.; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italia; ; ; ; ; A 4.8 m long gravity core was recovered on a relative topographic high in the northern part of the Marsili Basin (southern Tyrrhenian Sea) at a water depth of 3200 m. The core was taken in order to decipher the sedimentary record of the past volcanic events of the nearby Aeolian arc. A succession of thin (2 cm to 5 cm thick) fine-grained turbidites, mainly of volcaniclastic origin, topped by hemipelagic mud layers and a number of primary tephra layers were recovered by the core. The most prominent turbidite occurs in the lower part of the core at 385 cm. It consists of a 20 cm-thick, thinning-upward, pebble to sand-sized bed. Grain-size analysis and component compositions in the 0.063–0.250 mm size fractions were determined on thirty samples taken from primary tephra beds and the silty–sandy basal part of the volcaniclastic turbidite units. SEM scans and glass fraction chemical analyses were successively carried out on a selection of 17 samples. To aid source correlation and comparison, sub-aerial tephras of the Lower Pollara (Salina, 24 ± 3.6 ka), Gabellotto-Fiumebianco (Lipari, 8.5 or 11.5 ka), Monte Pilato (Lipari, 749 or 580 AD) and Secche di Lazzaro (Stromboli, ~ 5 ka) eruptions were also analyzed with the same procedure. Primary tephra respectively belonging to the eruptions of Lower Pollara, Gabellotto-Fiumebianco and Vesuvius (AP eruptions 3.5 ka–79 AD) were identified in the core at the expected relative stratigraphic depths. Two turbidite beds composed of monogenic glass shards were also identified and interpreted as the remobilisation of primary tephras of Secche di Lazzaro (Stromboli, 5 ka) and Pilato (Lipari, 580 or 749 AD). Tephrochronology results indicate that the cored sequence formed in the last 30 ka suggesting an average sedimentation rate of 0.15–0.17 mm/y. The thick pebbly sandy turbidite unit in the lower part of the core has component and glass composition compatible with the Lower Pollara volcanic sequence of Salina Island. In view of the grain-size and thickness of the turbidite unit, we suggest that it represents the deposit of a large failure event. The tephra corresponding to the Lower Pollara event lies below the turbidite unit, separated by 16 cm of hemipelagic mud, indicating that the collapse took place sometime after the eruption.219 24 - PublicationRestrictedNewly discovered submarine flank eruption at Stromboli volcano (Aeolian Islands, Italy)(2008-08-27)
; ; ; ; ; ; ;Di Roberto, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Bertagnini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Pompilio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Gamberi, F.; Istituto di Geologia Marina, CNR, Bologna, Italia ;Marani, M. P.; Istituto di Geologia Marina, CNR, Bologna, Italia ;Rosi, M.; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italia; ; ; ; ; The NW submarine portion of Stromboli volcano has been investigated by deep-towed sidescan sonar, bathymetric surveys, video camera runs and dredging during two research cruises in 2002 and 2004. The surveys resulted in the identification of an extensive pillow lava field (106-107m3) at about 2300 m of water depth and 9 km from the shoreline of Stromboli Island. The pillow lavas have a unique composition that does not match any known subaerial product, although a limited affinity exists with those erupted during the Neostromboli eruptive cycle of the island (13–6 ka). This is the first finding of a submarine eruption on the northern side of Stromboli and improves the knowledge of its flank activity and volcanic hazards. This eruption is interpreted as marking the onset of a new volcanic cycle from the edifice periphery fed by a new, distinct magma mixed with traces of the previous magma that survived the emptying of the Neostromboli magma chamber.213 19 - PublicationOpen AccessDeep-sea deposits of the 30 december 2002 landslide(2008)
; ; ; ; ; ;Marani, M. P.; Istituto di Scienze Marine - CNR, Sede di Geologia Marina di Bologna, Bologna, Italia ;Gamberi, F.; Istituto di Scienze Marine – CNR, Sede di Geologia Marina di Bologna, Bologna, Italia ;Rosi, M.; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italia ;Bertagnini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Di Roberto, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; ; ; ; ; ; ; ; ; ; ;Calvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia ;Inguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia ;Puglisi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia ;Ripepe, M.; Università degli Studi di Firenze ;Rosi, M.; Università degli Studi di Pisa; ; ; ; Stromboli is a 3000-m-high, conical island-arc volcano rising to 900 m above sea level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). In the last 13 Kr four large-volume (1 km3) flank collapses have played an important role in shaping the northwestern flank (Sciara del Fuoco- SdF) of the volcano. These flank collapses have the potential to cause hazardous tsunamis in the Aeolian islands and farther afield along the Italian coast. In addition, smaller volume, much more frequent partial collapses of the SdF have been shown to be tsunami generating, potentially hazardous events One such partial collapse occurred on 30/12/2002, on the north-western flank of the island. The resulting landslide generated a 10-m-high tsunami that impacted the island. Multibeam bathymetry, side-scan sonar and seabed visual observations reveal that 25-30 x 106 m3 of sediments were deposited on the offshore from the Sciara del Fuoco landslide. Sediment samples have led to the recognition of a proximal coarse-grained landslide deposit on the volcano slope and a distal, cogenetic, sandy turbidite 24 km from the Stromboli shoreline. The proximal landslide deposit consists of two contiguous facies: (1) a chaotic, coarse grained (meter- to centimetre-sized clasts) deposit and (2) a sand deposit containing a lower, cross bedded sand layer and an upper structureless, pebbly sand bed, capped by seafloor ripple bedforms. The ubiquitous sand facies develops laterally with and over the coarse-grained deposits. Distally, a capping 2-3 cm-thick sand layer, not present in a pre-landslide September 2002 core, is interpreted as the finer grained turbidite equivalent of the proximal deposits. Characteristics of the SdF landslide deposits suggest that they derive from cohesionless, sandy-matrix, density flows. Flow rheology resulted in segregation of the density flow into sand-rich and clast-rich regions. Our results show that a range of density flow transitions, based principally on particle concentration and grain-size partitioning of cohesionless parent flows, can be identified in the proximal and distaldeposits of this relatively small-scale landslide event on Stromboli.240 315 - PublicationOpen AccessSedimentologic and volcanologic investigation of the deep tyrrhenian sea: preliminary result of cruise VST02(2006-03-24)
; ; ; ; ; ; ; ; ;Gamberi, F.; ISMAR-CNR, Sezione di Geologia Marina, Bologna ;Marani, M.; ISMAR-CNR, Sezione di Geologia Marina, Bologna ;Landuzzi, V.; ISMAR-CNR, Sezione di Geologia Marina, Bologna ;Magagnoli, A.; ISMAR-CNR, Sezione di Geologia Marina, Bologna ;Penitenti, D.; ISMAR-CNR, Sezione di Geologia Marina, Bologna ;Rosi, M.; Dipartimento di Scienze della Terra, Università di Pisa ;Bertagnini, A.; Dipartimento di Scienze della Terra, Università di Pisa ;Di Roberto, A.; Dipartimento di Scienze della Terra, Università di Pisa; ; ; ; ; ; ; The VST02 cruise carried out in the summer of 2002 was focused at sedimentologic and volcanologic researches over selected areas of the deep portion of the Tyrrhenian sea. Chirp lines and seafloor samples were collected from the Calabrian slope surrounding Stromboli island, in the Marsili deep sea fan, in the Vavilov basin and in the Vavilov seamount. Submarine volcanic activity, both explosive and effusive, is occuring in the Stromboli edifice. Explosive submarine volcanism affects also the shallowest areas of the Vavilov seamount. Submarine carbonate lithification has been observed on the sediment-starved flanks of the Vavilov seamount. Acoustic transparent layers make up the recentmost infill of the Gortani basin, the easternmost portion of the Vavilov basin. Channels comprised of a variety of architectural elements and depositional lobes are the main elements of the Marsili deep-sea fan where, apparently, sedimentation occurs mainly through debris flow processes.290 674 - PublicationOpen AccessA fleet of multiparameter observatories for geophysical and environmental monitoring at seafloor(2006-03-20)
; ; ; ; ; ; ; ; ; ; ; ; ;Favali, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Beranzoli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;D'Anna, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Gasparoni, F.; Tecnomare-ENI S.p.A., Venezia (Italy) ;Marvaldi, J.; IFREMER, Brest (France) ;Clauss, G.; Technische Universität Berlin (Germany) ;Gerber, H. W.; TFH Berlin – University of Applied Sciences, Berlin, Germany ;Nicot, M.; SERCEL-Underwater Acoustic Division (former ORCA Instrumentation), Brest (France) ;Marani, M. P.; Istituto di Scienze Marine-CNR, Sezione di Geologia Marina, Bologna (Italy) ;Gamberi, F.; Istituto di Scienze Marine-CNR, Sezione di Geologia Marina, Bologna (Italy) ;Millot, C.; Laboratoire d’Océanographie et de Biogéochimie-CNRS, Marseille (France) ;Flueh, E. R.; IFM-GEOMAR, Kiel (Germany); ; ; ; ; ; ; ; ; ; ; Seafloor long-term, multiparameter, single-frame observatories have been developed within the framework of European Commission and Italian projects since 1995. A fleet of five seafloor observatories, built-up starting from 1995 within the framework of an effective synergy among research institutes and industries, have carried out a series of long-term sea experiments. The observatories are able to operate from shallow waters to deep sea, down to 4,000 m w.d., and to simultaneously monitor a broad spectrum of geophysical and environmental processes, including seismicity, geomagnetic field variations, water temperature, pressure, salinity, chemistry, currents, and gas occurrence. Moreover, they can transmit data in (near)-real-time that can be integrated with those of the on-land networks. The architecture of the seafloor observatories follows the criteria of modularity, interoperability and standardisation in terms of materials, components and communication protocols. This paper describes the technical features of the observatories, their experiments and data.627 747 - PublicationOpen AccessMission results from the first GEOSTAR observatory (Adriatic Sea, 1998)(2003)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Beranzoli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Braun, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Calcara, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Casale, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;De Santis, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;D'Anna, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Di Mauro, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Etiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Favali, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Fudà, J-L.; Laboratoire d’Océanographie et de Biogeochemie—CNRS, Marseille, France ;Frugoni, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Gamberi, F.; Istituto per la Geologia Marina—CNR, Bologna, Italy ;Marani, M.; Istituto per la Geologia Marina—CNR, Bologna, Italy ;Millot, C.; Laboratoire d’Océanographie et de Biogeochemie—CNRS, Marseille, France ;Montuori, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Smriglio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We assess the first mission of the GEOSTAR (GEophysical and Oceanographic STation for Abyssal Research) deep-sea multidisciplinary observatory for its technical capacity, performance and quality of recorded data. The functioning of the system was verified by analyzing oceanographic, seismological and geomagnetic measurements. Despite the mission’s short duration (21 days), its data demonstrated the observatory’s technological reliability and scientific value. After analyzing the oceanographic data, we found two different regimes of seawater circulation and a sharp and deepening pycnocline, linked to a down-welling phenomenon. The reliability of the magnetic and seismological measurements was evaluated by comparison with those made using on-land sensors. Such comparison of magnetic signals recorded by permanent land geomagnetic stations and GEOSTAR during a “quiet” day and one with a magnetic storm confirmed the correct functioning of the sensor and allowed us to estimate the seafloor observatory’s orientation. The magnitudes of regional seismic events recorded by our GEOSTAR seismometer agreed with those computed from land stations. GEOSTAR has thus proven itself reliable for integrating other deep-sea observation systems, such as modular observatories, arrays, and instrumented submarine cables587 295 - PublicationRestrictedEuropean Seafloor Observatory Offers New Possibilities For Deep Sea Study(2000-02-01)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Beranzoli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Braun, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Calcara, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Calore, D.; Tecnomare S.p.A Venezia ;Campaci, R.; Tecnomare S.p.A Venezia ;Coudeville, J-M,; ORCA instrumentations ;De Santis, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Di Mauro, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Etiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Favali, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Frugoni, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Fuda, J-L.; LOB-CNRS Marselle ;Gamberi, F.; ISMAR-CNR Bologna ;Gasparoni, F.; Tecnomare S.p.A Venezia ;Gerber, H.; TFH Berlin ;Marani, M.; ISMAR-CNR Bologna ;Marvaldi, J.; IFREMER ;Millot, C.; LOB-CNRS Marselle ;Montuori, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Romeo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Palangio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Smriglio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Geophysical and Oceanographic Station for Abyssal Research (GEOSTAR), an autonomous seafloor observatory that collects measurements benefiting a number of disciplines during missions up to 1 year long, will begin the second phase of its first mission in 2000. The 6-8 month investigation will take place at a depth of 3400 m in the southern Tyrrhenian basin of the southern Tyrrhenian basin of the central Mediterranean. GEOSTAR was funded by the European Community (EC) for $2.4 million (U.S. dollars) in 1995 as a part of the Marine Science and Technology programme (MAST). The innovative deployment and recovery procedure GEOSTAR uses was derived from the "two-module" concept successfully applied by NASA in the Apollo and space shuttle missions, where one module performs tasks for the other, including deployment, switching on and off, performing checks and recovery. The observatory communication system, which takes advantage of satellite telemetry, and the simultaneous acquisition of a set of various measurements with a unique time reference make GEOSTAR the first fundamental element of a multiparameter ocean network. GEOSTAR's first scientific and technological mission, which took place in the summer of 1998 in the Adriatic Sea, verified the performance and reliability of the system. The mission was a success. providing 440 hours of continuous seismic magnetic and oceanographic data. Thje second phase of the mission, which was funded by the EC for $2 million (US dollars), will carry equipment for chemical, biological and isotopic analyses not used in the first phase, which will broaden the data collection effort.532 46