Options
Suski, B.
Loading...
3 results
Now showing 1 - 3 of 3
- PublicationRestrictedDeep electrical resistivity tomography along the tectonically active Middle Aterno Valley (2009 L'Aquila earthquake area, central Italy)(2016)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ;Three 2-D Deep Electrical Resistivity Tomography (ERT) transects, up to 6.36 km long, were obtained across the Paganica-San Demetrio Basin, bounded by the 2009 L’Aquila Mw 6.1 normal-faulting earthquake causative fault (central Italy). The investigations allowed defining for the first time the shallow subsurface basin structure. The resistivity images, and their geological interpretation, showa dissected Mesozoic-Tertiary substratum buried under continental infill of mainly Quaternary age due to the long-term activity of the Paganica-San Demetrio normal faults system (PSDFS), ruling the most recent deformational phase. Our results indicate that the basin bottom deepens up to 600 m moving to the south, with the continental infill largely exceeding the known thickness of the Quaternary sequence. The causes of this increasing thickness can be: (1) the onset of the continental deposition in the southern sector took place before the Quaternary, (2) there was an early stage of the basin development driven by different fault systems that produced a depocentre in the southern sector not related to the present-day basin shape, or (3) the fault system slip rate in the southern sector was faster than in the northern sector. We were able to gain sights into the long-term PSDFS behaviour and evolution, by comparing throw rates at different timescales and discriminating the splays that lead deformation. Some fault splays exhibit large cumulative throws (>300 m) in coincidence with large displacement of the continental deposits sequence (>100 m), thus testifying a general persistence in time of their activity as leading splays of the fault system. We evaluate the long-term (3–2.5Myr) cumulative and Quaternary throw rates of most of the leading splays to be 0.08–0.17 mm yr−1, indicating a substantial stability of the faults activity. Among them, an individual leading fault splay extends from Paganica to San Demetrio ne’ Vestini as a result of a post-Early Pleistocene linkage of two smaller splays. This 15 km long fault splay can explain the Holocene surface ruptures observed to be larger than those occurred during the 2009 L’Aquila earthquake, such as revealed by palaeoseismological investigations. Finally, the architecture of the basin at depth suggests that the PSDFS can also rupture a longer structure at the surface, allowing earthquakes larger than M 6.5, besides rupturing only small sections, as it occurred in 2009.294 5 - PublicationRestrictedAdventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: Implications for general fluid flow models on volcanoes(2010)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Finizola, A.; Laboratoire GéoSciences Réunion, UR, IPGP, UMR 7154, Saint Denis, La Réunion, France ;Ricci, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Deiana, R.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy ;Barde Cabusson, S.; Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy ;Rossi, M.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy ;Praticelli, N.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy ;Giocoli, A.; Laboratorio di Geofisica, IMAA-CNR, Tito Scalo, Potenza, Italy ;Romano, G.; Tito Scalo, Potenza, Italy ;Delcher, E.; ;Suski, B.; Institut de Géophysique, Université de Lausanne, Lausanne, Switzerland ;Revil, A.; Colorado School of Mines, Illinois St. Golden, Colorado, USA; CNRS-LGIT, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France ;Menny, P.; Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France ;Di Gangi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia ;Letort, J.; Ecole et Observatoire des Sciences de la Terre, Université de Strasbourg, France ;Peltier, A.; Institut de Physique du Globe de Paris, UMR 7154, Paris, France ;Villasante-Marcos, V.; Instituto Geografico Nacional, Madrid, Spain ;Douillet, G.; Ecole et Observatoire des Sciences de la Terre, Université de Strasbourg, France ;Avard, G.; Department of Geological Sciences, University of Missouri, USA ;Lelli, M.; Istituto di Geoscienze e Georisorse, CNR, Pisa, Italy; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products,mostly lithic blocks, someofwhich impacted the ground as far as down to 200 m a.s.l., about 1.5 kmfaraway fromthe active vents. Two days after the explosion, a newvapouremissionwas discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called “Nel Cannestrà”. This new vapour emission was due to a block impact. In order to investigate the block impact area to understand the appearance of the vapour emission, we conducted on May 2008 a multidisciplinary study involving Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Self-Potential (SP), CO2 soil diffuse degassing and soil temperature surveys. This complementary data set revealed the presence of an anomalous conductive body, probably related to a shallow hydrothermal level, at about 10–15 m depth, more or less parallel to the topography. It is the first time that such a hydrothermal fluid flow,with a temperature close to thewater boiling point (76 °C) has been evidenced at Stromboli at this low elevation on the flank of the edifice. The ERT results suggest a possible link between (1) the main central hydrothermal system of Stromboli, located just above the plumbing system feeding the active vents, with a maximum of subsurface soil temperature close to 90 °C and limited by the NeoStromboli summit crater boundary and (2) the investigated area of Nel Cannestrà, at ~500 m a.s.l., a buried eruptive fissure active 9 ka ago. In parallel, SP and CO2 soil diffuse degassingmeasurements suggest in this sector at slightly lower elevation fromthe block impact crater a magmatic and hydrothermal fluid rising system along the N41° regional fault. A complementary ERT profile, on May 2009, carried out from the NeoStromboli crater boundary downto the block impact crater displayed a flank fluid flowapparently connected to a deeper system. The concept of shallow hydrothermal level have been compared to similar ERT results recently obtained onMount Etna and La Fossa cone of Vulcano. This information needs to be taken into account in general fluid flow models on volcanoes. In particular, peripheral thermal waters (as those bordering the northeastern coast of Stromboli) could be contaminated by hydrothermal and magmatic fluids coming from regional faults but also from the summit.559 30 - PublicationOpen AccessNew geological insights and structural control on fluid circulation in La Fossa cone (Vulcano, Aeolian Islands, Italy)(2009)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Barde-Cabusson, S.; Dipartimento di Scienze della Terra, Università Degli Studi di Firenze, Italy; LMV, Université Blaise Pascal, Clermont-Ferrand, France ;Finizola, A.; Laboratoire GéoSciences Réunion, UR, IPGP, UMR 7154, Saint-Denis, La Réunion, France; Istituto Nazionale di Geofisica e Vulcanologia, Palermo, Italy ;Revil, A.; Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA; CNRS-LGIT (UMR 5559), University of Savoie, Equipe Volcan, Chambéry, France ;Ricci, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Piscitelli, S.; IMAA-CNR, Laboratory of Geophysics Tito Scalo (PZ), Italy ;Rizzo, E.; IMAA-CNR, Laboratory of Geophysics Tito Scalo (PZ), Italy ;Angeletti, B.; CNRS-CEREGE, Université Paul Cézanne, Aix en Provence, France ;Balasco, M.; IMAA-CNR, Laboratory of Geophysics Tito Scalo (PZ), Italy ;Bennati, L.; Dept. of Earth & Atmospheric Sciences, Purdue University, West Lafayette, USA ;Byrdina, S.; LMV, Université Blaise Pascal, Clermont-Ferrand, France; Equipe de Géomagnétisme, IPGP, UMR 7154, 4, Place Jussieu, 75005 Paris, France ;Carzaniga, N.; Dipartimento di Scienze della Terra, Università Degli Studi di Firenze, Italy ;Crespy, A.; CNRS-CEREGE, Université Paul Cézanne, Aix en Provence, France ;Di Gangi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia ;Morin, J.; Laboratoire GéoSciences Réunion, UR, IPGP, UMR 7154, Saint-Denis, La Réunion, France; Université Paris 1, Panthéon-Sorbonne, Paris, France ;Perrone, A.; IMAA-CNR, Laboratory of Geophysics Tito Scalo (PZ), Italy ;Rossi, M.; Dipartimento di Geoscienze, Università di Padova, Italy; Università Milano-Bicocca, Milan, Italy ;Roulleau, E.; GEOTOP-UQAM-McGill, Montréal, Canada ;Suski, B.; Université de Lausanne (UNIL), Institut de Géophysique, Lausanne, Switzerland; CNRS-CEREGE, Université Paul Cézanne, Aix en Provence, France ;Villeneuve, N.; Institut de Recherche pour le Développement, US 140 ESPACE, La Réunion, France; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Electric resistivity tomography (ERT), self-potential (SP), soil CO2 flux, and temperature are used to study the inner structure of La Fossa cone (Vulcano, Aeolian Islands). Nine profiles were performed across the cone with a measurement spacing of 20 m. The crater rims of La Fossa cone are underlined by sharp horizontal resistivity contrasts. SP, CO2 flux, and temperature anomalies underline these boundaries which we interpret as structural limits associated to preferential circulation of fluids. The Pietre Cotte crater and Gran Cratere crater enclose the main hydrothermal system, identified at the centre of the edifice on the base of low electrical resistivity values (b20 Ω m) and strong CO2 degassing, SP, and temperature anomalies. In the periphery, the hydrothermal activity is also visible along structural boundaries such as the Punte Nere, Forgia Vecchia, and Palizzi crater rims and at the base of the cone, on the southern side of the edifice, along a fault attributed to the NW main tectonic trend of the island. Inside the Punte Nere crater, the ERT sections show an electrical resistive body that we interpret as an intrusion or a dome. This magmatic body is reconstructed in 3D using the available ERT profiles. Its shape and position, with respect to the Pietre Cotte crater fault, allows replacing this structure in the chronology of the development of the volcano. It corresponds to a late phase of activity of the Punte Nere edifice. Considering the position of the SP, soil CO2 flux, and temperature maxima and the repartition of conductive zones related to hydrothermal circulation with respect to the main structural features, La Fossa cone could be considered as a relevant example of the strong influence of preexisting structures on hydrothermal fluid circulation at the scale of a volcanic edifice.615 1379