Options
Brusca, Lorenzo
Loading...
Preferred name
Brusca, Lorenzo
Email
lorenzo.brusca@ingv.it
Staff
staff
ORCID
Scopus Author ID
9239345500
105 results
Now showing 1 - 10 of 105
- PublicationOpen AccessExploring Rare Earth Element behavior in the Mount Etna volcanic aquifers (Sicily)(2024-06-07)
; ; ; ;Fornasaro, Silvia; ; ; ; ; ; ; This study presents the first data on REY (Rare Earth Elements plus Yttrium) in the aquifer of Mount Etna (Sicily, Italy). Patterns normalized to chondrites indicate strong water-rock interaction, facilitated by a slightly acidic pH resulting from the dissolution of magma-derived CO2. REY patterns provide insights into the processes of both mineral dissolution and the formation of secondary phases. The relative abundance of light to heavy rare earth elements is compatible with the prevailing dissolution of ferromagnesian minerals (e.g., olivine or clinopyroxenes), reinforced by its strong correlation with other proxies of mineral dissolution (e.g., Mg contents). Pronounced negative Ce anomalies and positive Y anomalies demonstrate an oxidizing environment with continuous formation of secondary iron and/or manganese oxides and hydroxides. The Y/Ho fractionation is strongly influenced by metal complexation with bicarbonate complexes, a common process in C-rich waters. In the studied system, the measured REY contents are always below the limits proposed by Sneller et al. (2000, RIVM report, Issue 601,501, p. 66) for surface water and ensure a very low daily intake from drinking water.30 3 - PublicationOpen AccessElement mobility during basalt-water-CO2 interaction: observations in natural systems vs. laboratory experiments and implication for carbon storage(2024-05-16)
; ; ; ; ; Today, carbon dioxide removal from the atmosphere is the most ambitious challenge to mitigate climate changes. Basalt rocks are abundant on the Earth's surface (≈ 10%) and very abundant in the ocean floors and subaerial environments. Glassy matrix and minerals constituting these rocks contain metals (Ca2+, Mg2+, Fe2+) that can react with carbonic acid to form metal carbonates (CaCO3, MgO3 and FeCO3). Here, we present a data compilation of the chemical composition of waters circulating in basalt aquifers worldwide and the results of simple basalt-water-CO2 experiments. Induced or naturally occurring weathering of basalts rocks release elements in waters and elemental concentration is closely dependent on water CO2 concentration (and hence on water pH). We also performed two series of experiments where basaltic rock powder interacts with CO2-charged waters for one month at room temperature. Laboratory experiments evidenced that in the first stages of water-rock interaction, the high content of CO2 dissolved in water accelerates the basalt weathering process, releasing in the water not only elements that can form carbonate minerals but also other elements, which depending on their concentration can be essential or toxic for life. Relative mobility of elements such as Fe and Al, together with rare earth elements, increases at low pH conditions, while it decreases notably at neutral pH conditions. The comparison between experimental findings and natural evidence allowed to better understand the geochemical processes in basaltic aquifers hosted in active and inactive volcanic systems and to discuss these findings in light of the potential environmental impact of CO2 storage in mafic and ultramafic rocks.55 18 - PublicationOpen AccessFluid-mineral dynamics at the Rincón de la Vieja volcano—hydrothermal system (Costa Rica) inferred by the study of major, minor and rare earth elements in the hyperacid crater lake(2023-10)
; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;Volcanic lakes are complex natural systems and their chemical composition is related to a myriad of processes. The chemical composition of major, minor, Rare Earth Elements (REE) and physico-chemical parameters at the hyperacid crater lake of Rincón de la Vieja volcano (Costa Rica) are here investigated during February 2013–August 2014. The study of the lake chemical composition allows to identify the main geochemical processes occurring in the lake and to track the changes in the volcanic activity, both important for active volcanoes monitoring. The total REE concentration ( REE) dissolved in the crater lake varies from 2.7 to 3.6 mg kg−1 during the period of observation. REE in the water lake samples normalized to the average volcanic local rock (REEN-local rock) are depleted in light REE (LREE). On the contrary REEN-local rock in the solids precipitated (mainly gypsum/anhydrite), from lake water samples in laboratory at 22°C, are enriched in LREE. The low variability of (La/Pr)N-local rock and (LREE/ HREE)N-local rock ratios (0.92–1.07 and 0.66–0.81, respectively) in crater lake waters is consistent with the low phreatic activity (less than 10 phreatic eruptions in 2 years) observed during the period of observation. This period of low activity precedes the unrest started in 2015, thus, it could be considered as a pre-unrest, characterized by infrequent phreatic eruptions. No clear changes in the REE chemistry are associated with the phreatic eruption occurred at mid- 2013. The results obtained investigating water-rock interaction processes at theRincón de la Vieja crater lake show that rock dissolution and mineral precipitation/ dissolution are the main processes that control the variability of cations composition over time. In particular, precipitation and dissolution of gypsum and alunite are responsible for the variations of REE in the waters. Despite the low variations of (La/Pr)N-local rock and (LREE/HREE)N-local rock ratios, this study allows to suggest that REE can be used, together with major elements, as practical tracers of water-rock interaction processes and mineral precipitation/ dissolution at active hyperacid crater lakes over time, also during periods of quiescence and low phreatic activity.80 13 - PublicationOpen AccessHydrogeochemistry of trace and rare earth elements in the Caviahue-Copahue Volcanic Complex(2023-09-20)
; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;; ; The Caviahue-Copahue Volcanic Complex is one of the most studied active volcanic systems in the South American Andean range, and yet little research has focused on trace and rare-earth elements of waters, especially during an eruptive cycle. In this study, we sampled and investigated natural waters from 23 sites (involving the crater lake, hot springs, streams, rivers, and bubbling pools) in two campaigns in 2017 and 2018, using physi cochemical parameters, major, trace and rare-earth elements concentrations. With this novel dataset, it was possible to identify, characterize and compare three groups of waters with distinctive hydrofacies. Indeed, the normalization of water compositions against host rock concentrations showed a particular trace element pattern for each group of waters. Although the absolute concentrations of the elements in each sampling site changed from 2017 to 2018, the normalized patterns did not. Boron, As, Cd, Tl, Se, and Te, commonly recognized as volatile, are the main trace elements that magmatic gases supply to the system headwaters, whereas elements such as Ca, K, and Ba are affected by precipitation of secondary minerals (gypsum, anhydrite, barite, jarosite, and alunite). Furthermore, the main river draining the summit volcano shows a steep decrease in As, Cr, and V concentrations correlated to the precipitation of Fe and Al hydroxysulfates (schwertmannite and basaluminite, respectively). Moreover, it is the first time that a comparison between the different water groups is made using the patterns of the rare-earth elements, allowing us to identify and separate depletion patterns due to dilution processes from those due to precipitation processes.52 10 - PublicationOpen AccessHellenic karst waters: geogenic and anthropogenic processes affecting their geochemistry and quality(2023-07-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Karst hydrosystems represent one of the largest global drinking water resources, but they are extremely vulnerable to pollution. Climate change, high population density, intensive industrial, and agricultural activities are the principal causes of deterioration, both in terms of quality and quantity, of these resources. Samples from 172 natural karst springs were collected in the whole territory of Greece. To identify any geogenic contamination and/or anthropogenic pollution, analyses of their chemical compositions, in terms of major ions and trace elements, were performed and compared to the EU limits for drinking water. Based on chloride content, the collected karst springs were divided into two groups: low-chloride (< 100 mg L-1) and high-chloride content (> 100 mg L-1). An additional group of springs with calcium-sulfate composition was recognised. Nitrate concentrations were always below the EU limit (50 mg L-1), although some springs presented elevated concentrations. High contents in terms of trace elements, such as B, Sr, As, and Pb, sometimes exceeding the limits, were rarely found. The Greek karst waters can still be considered a good quality resource both for human consumption and for agriculture. The main issues derive from seawater intrusion in the aquifers along the coasts. Moreover, the main anthropogenic pollutant is nitrate, found in higher concentrations mostly in the same coastal areas where human activities are concentrated. Finally, high levels of potentially harmful trace elements (e.g. As, Se) are very limited and of natural origin (geothermal activity, ore deposits, etc.).263 7 - PublicationOpen AccessCharacterization of trace elements in thermal and mineral waters of Greece(2023-07)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Natural thermal and mineral waters are widely distributed along the Hellenic region and are related to the geodynamic regime of the country. The diverse lithological and tectonic settings they are found in reflect the great variability in their chemical and isotopic composition. The current study presents 276 (published and unpublished) trace element water data and discusses the sources and processes affecting the water by taking into consideration the framework of their geographic distribution. The dataset is divided in groups using temperature- and pH-related criteria. Results yield a wide range of concentrations, often related to the solubility properties of the individual elements and the factors impacting them (i.e. temperature, acidity, redox conditions and salinity). Many elements (e.g. alkalis, Ti, Sr, As and Tl) present a good correlation with temperature, which is in cases impacted by water rock interactions, while others (e.g. Be, Al, Cu, Se, Cd) exhibit either no relation or an inverse correlation with T possibly because they become oversaturated at higher temperatures in solid phases. A moderately constant inverse correlation is noticed for the vast majority of trace elements and pH, whereas no relationship between trace element concentrations and Eh was found. Seawater contamination and water-rock interaction seem to be the main natural processes that influence both salinity and elemental content. All in all, Greek thermomineral waters exceed occasionally the accepted limits representing in such cases serious harm to the environment and probably indirectly (through the water cycle) to human health.283 22 - PublicationOpen AccessAtmospheric Deposition around the Industrial Areas of Milazzo and Priolo Gargallo (Sicily–Italy)—Part B: Trace Elements(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The concentrations of trace elements in atmospheric bulk depositions (wet plus dry) were investigated from two highly industrialised areas of Sicily (southern Italy) from June 2018 to July 2019, in order to recognise the main natural and anthropogenic sources. A side objective of this study was to improve the common sampling procedures and analytical methods used for monitoring trace elements in atmospheric deposition. The trace element VWM (Volume-Weighted Mean) concentrations ranged from less than 0.01 µg L-1 for trace elements such as Cs, Tl, and U, up to 24 µg L-1 for minor elements (Al, Zn, Sr), in the filtered aliquot, while they reached concentrations up to 144 µg L-1 for the same elements, in the unfiltered aliquot. Therefore, significant differences in concentrations between these two aliquots were found, particularly for Al, Fe, Ti, Zn, Cr, Pb, Se, Cs, and U. This implies that filtering operations may produce a consistent underestimation of concentrations of certain ‘constituents’ of the atmospheric deposition. Natural (marine spray, local and regional geogenic input, volcanic emanations) and anthropogenic sources (industrial emissions, auto vehicular traffic, and diffuse background pollution) which influence rainwater chemistry were identified. Enrichment factors (EFs), with respect to the upper crust composition, provided clear evidence of the different sources above mentioned: Ti, Fe, Al, Cs, Cr, Rb, and Co have low EFs (<1), and are referable to the (local and/or regional) geogenic input, while Se, Sb, Zn, B, Cd, Cu, Mo, Sr, As, with high EFs (>10), highlight the influence of marine and/or industrial sources. The study produced a novel dataset on the atmospheric deposition rate of several trace elements, which had never been studied in the investigated areas. Finally, a comparison of trace element deposition rates in the studied areas with the atmospheric deposition reported for 53 different sites, belonging to 20 different European nations, was made. The comparison showed that some elements, such as Al, V, Zn, and Mo had higher median deposition fluxes in the Sicilian sites than in European monitoring sites.179 14 - PublicationOpen AccessRare Earth Elements Variations in a Hyperacid Crater Lake and Their Relations With Changes in Phreatic Activity, Physico-Chemical Parameters, and Chemical Composition: The Case of Poás Volcano (Costa Rica)(2022-01-03)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Decades of geochemical monitoring at active crater lakes worldwide have confirmed that variations in major elements and physico-chemical parameters are useful to detect changes in volcanic activity. However, it is still arduous to identify precursors of single phreatic eruptions. During the unrest phase of 2009–2016, at least 679 phreatic eruptions occurred at the hyperacid and hypersaline crater lake Laguna Caliente of Poás volcano (Costa Rica). In this study, we investigate the temporal variations of Rare Earth Elements (REE) dissolved in Laguna Caliente in order to 1) scrutinize if they can be used as a new geochemical tool to monitor changes of phreatic activity at hyperacid crater lakes and 2) identify the geochemical processes responsible for the variations of REE concentrations in the lake. The total concentration of REE varies from 950 to 2,773 μg kg−1. (La/Pr)N-local rock ratios range from 0.93 to 1.35, and Light REE over Heavy REE (LREE/HREE)N-local rock ratios vary from 0.71 to 0.95. These same parameters vary in relation to significant changes in phreatic activity; in particular, the (La/Pr)N-local rock ratio increases as phreatic activity increases, while that of (LREE/HREE)N-local rock decreases when phreatic activity increases. REE concentrations and their ratios were compared with the variations of major elements and physico-chemical parameters of the lake. Calcium versus (La/Pr)N-local rock and versus (LREE/HREE)N-local rock ratios show different trends compared to the other major elements (Na, K, Mg, Al, Fe, SO4, and Cl). Moreover, a higher loss of Ca (up to 2,835 ppm) in lake water was found with respect to the loss of Al, K, and Na. This loss of Ca is argued to be due to gypsum precipitation, a process corroborated by the mass balance calculation simulating the precipitation of gypsum and the contemporaneous removal of REE from the lake water. The observed relations between REE, changes in phreatic activity, and the parameters commonly used for the monitoring of hyperacid volcanic lakes encourage investigating more on the temporal and cause-effect relationship between REE dynamics and changes in phreatic activity at crater lake-bearing volcanoes.560 59 - PublicationOpen AccessAssessment of potentially toxic elements (PTEs) sources on soils surrounding a fossil fuel power plant in a semi-arid/arid environment: A case study from the Sonoran Desert(2022-01)
; ; ; ; ; ; ; ; ; Understanding the sources of potentially toxic elements (PTEs) in soils is a worldwide challenge that requires effective discrimination between geogenic and anthropogenic contributions, particularly in areas with certain geological complexity. This study aims to examine the chemical contents of 23 topsoil samples collected from the surroundings of a fossil fuel power plant in the village of Puerto Libertad (Sonoran Desert, Mexico). The study did not exclusively focus on the source identification of the priority PTEs to evaluate soil pollution. Furthermore, major oxides and immobile trace element (Zr, Hf, and REE: La→Lu) data were provided for a reliable assessment of the provenance of the soils. The relatively high SiO2 contents (65.26–75.42 wt%, anhydrous basis), the Post-Archean Australian Shale (PAAS)-normalized REE patterns, and the uniformity of the values of the Index of Compositional Variability (ICV = 1.11–2.72) and the Chemical Index of Alteration (CIA = 31.65–51.79) suggest that the soils were derived from intermediate to felsic source rocks, controlled by the local weathering of the parent bedrocks, under a low degree of chemical weathering conditions. The PTE data were treated following a robust workflow, which included the use of the enrichment factor (EF), the Spearman rank correlation (ρ), and multivariate statistical analyses allowed the generation of significant elemental associations and the identification of pools related either to the geological background or to anthropogenic activities. The results suggesting that Mo and Zn concentrations present a moderate anthropogenic influence while the concentrations of Pb, Sn, Cu, Cd, As, Cr, and Co are predominantly of geogenic origin. Vanadium (avg. EFV = 3.4) and Ni (avg. EFNi = 4.6) were the most enriched elements in the soils. Moreover, the highest values of the integrated Nemerow Pollution Index (PIN>3) were recorded at the sampling stations closer to the village, suggesting point-source pollution by the emissions of the power station. Finally, in this paper is traced the extent of the particulate released into the atmosphere, which can be dispersed in a wide area into the Sonoran Desert.143 101 - PublicationOpen AccessInterlaboratory test for chemical analysis of geothermal fluids: A new approach to determine deep geothermal reservoir fluid composition with uncertainty propagation(2022)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; A representative fluid sampling of surface geothermal manifestations and its analytical data quality assurance and quality control (QA/QC) are challenging aspects of understanding the geothermal reservoir processes. To achieve these goals, an interlaboratory test for the chemical analyses of ten water samples: one synthetic water, two lake waters (i.e., duplicated), one stream water, and six water samples from two geothermal wells of Los Azufres Geothermal field (LAGF), Michoacan, Mexico, was conducted. The geothermal wells were sampled at four points: (1) total discharge of condensed fluid at the wellhead, (2) separate liquid condensed in the well separator, (3) flushed liquid at the weir box, and (4) separated vapor condensed at the well-separator (data taken from Verma et al., 2022). Sixteen laboratories from ten countries reported their results. The pH, electrical conductivity, Ca2+, Li+, SO4 2 B, and Si-total measurements were 8.35 ± 0.04, 12.25 ± 0.53 mS/cm, 25 ± 1 mg/l, 18 ± 1 mg/l, 569 ± 33 mg/l, 320 ± 21 mg/l, and 20.5 ± 0.7 mg/l, which are close to the conventional true values, 8.40, 12.31 mS/cm, 23 mg/l, 19 mg/l, 647 mg/l, 330 mg/l, and 20.0 mg/l, respectively. Analytical errors for major ions, Na+, Cl130 155