Options
Carpena, Andrea
Loading...
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessBlast-induced liquefaction in silty sands for full-scale testing of ground improvement methods: Insights from a multidisciplinary study(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In the engineering geology field increased attention has been posed in recent years to potential liquefaction mitigation interventions in susceptible sand formations. In silty sands this is a major challenge because, as the fines content increases, vibratory methods for densification become progressively less effective. An alternative mitigation technique can be the installation of Rammed Aggregate Pier® (RAP) columns that can increase the resistance of the soil, accounting for its lateral stress increase and for the stiffness increase from soil and RAP composite response. To investigate the influence of these factors on liquefaction resistance, full-scale blast tests were performed at a silty sand site in Bondeno (Ferrara, Italy) where liquefaction was observed after the 2012 Emilia-Romagna earthquake. A multidisciplinary team of forty researchers carried out devoted experimental activities aimed at better understanding the liquefaction process at the field scale and the effectiveness of the treatment using inter-related methods. Both natural and improved areas were investigated by in-situ tests and later subjected to controlled blasting. The blast tests were monitored with geotechnical and geophysical instrumentation, topographical surveying and geological analyses on the sand boils. Results showed the RAP effectiveness due to the improvement of soil properties within the liquefiable layer and a consequent reduction of the blast-induced liquefaction settlements, likely due to soil densification and increased lateral stress. The applied multidisciplinary approach adopted for the study allowed better understanding of the mechanism involved in the liquefaction mitigation intervention and provided a better overall evaluation of mitigation effectiveness2133 49 - PublicationOpen AccessThe first Italian blast-induced liquefaction test (Mirabello, Emilia-Romagna, Italy): description of the experiment and preliminary results(2017)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ;; ; ;; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ;; ;; Soil liquefaction can result in significant settlement and reduction of load-bearing capacity. Moreover, the generation of pore pressure during an earthquake and its post-seismic dissipation can generate permanent deformations and settlements. The quantitative evaluation of post-liquefaction settlements is of extreme importance for engineering purposes, i.e. for earthquake-resistant design of new buildings and safety evaluation of existing ones. Quantifying the extent of these phenomena is, however, rather difficult. Uncertainties arise from the stochastic nature of the earthquake loading, from the simplifications of soil models, and from the difficulty in establishing correlations between the pre-earthquake soil state and the post-seismic deformations. Field scale liquefaction tests, under controlled conditions, are therefore important for a correct quantification of these phenomena. Recent experiences (e.g. New Zealand, United States) show that liquefaction can be induced and monitored with field scale blast tests to study the related effects on soil geotechnical properties. Within this framework this paper introduces the preliminary results obtained from a research project on blast-induced liquefaction at field scale. Tests were performed at a trial site located in Mirabello (Ferrara, Italy), a village strongly affected by liquefaction phenomena during the 2012 Emilia Romagna earthquake. Invasive tests, such as piezocone, seismic dilatometer and down-hole tests, and non-invasive tests were carried out before and after the execution of two blast test sequences to study the variation in physical properties of the soils. Pore pressure transducers, settlement profilometers and accelerometers were installed with the objective of measuring, during and after the detonations, the generation and subsequent dissipation of the pore pressure, the vertical deformations, and the blast-induced ground motions respectively. Variations in load distribution on deep foundations due to soil liquefaction were also evaluated on a test micropile instrumented with a strain gauge array. Topographical surveys were carried out to measure ground surface settlements. Laboratory tests and trenches also provided increased understanding of the site characteristics.1689 143