Options
Sapia, Vincenzo
Loading...
Preferred name
Sapia, Vincenzo
Email
vincenzo.sapia@ingv.it
Staff
staff
ORCID
Scopus Author ID
47962560000
Researcher ID
D-1861-2018
65 results
Now showing 1 - 10 of 65
- PublicationOpen AccessUnveiling a hidden fortification system at “Faraglioni” Middle Bronze Age Village of Ustica Island (Palermo, Italy) through ERT and GPR prospections(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We carried out a geophysical research project in the Middle Bronze Age village of Ustica (Palermo, Sicily, Italy), named “Faraglioni Village” after the stack formations which detach from the coast north of the archaeological site. The investigation, which comprised Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) techniques, allowed us to discover the buried foundations of an outwork fortification system never evi denced by previous archaeological studies, only hypothesised from the observation of aerial photography and partially outcropping boulders, which align roughly parallel to the main defensive wall of the Village. Our geophysical prospection involved the entire 250 m-long arc of the outward village defensive wall, with the acquisition of eleven ERT profiles and 27 GPR scans. The techniques were selected based on both favourable logistics and methods applicability: ERT sections allowed us to trace a series of high-resistivity anomalies ar ranged to form an arc-shaped structure along the perimeter of the defensive wall. GPR investigation was localised in the most accommodating patch of terrain of the site, with the effort of intercepting clear enough sections of the target, to determine more accurately its shape, depth, and overall dimensions. Our discovery paves the way for new investigations, mainly aimed at defining the timing of construction of the fortification system, as well as the function of the remains of other architectural structures identified close to the wall, which could represent the target of further geophysical investigations.250 9 - PublicationOpen AccessHigh-resolution geophysical investigations in the central Apennines seismic belt (Italy): Results from the Campo Felice tectonic basin(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Campo Felice basin, in the central Apennines seismic belt (Italy), developed in the hangingwall of a 30 km-long system of NW-trending normal faults with Holocene paleoseismic activity and potential sources of M 6–7 earthquakes. We provide the first subsurface images of a key portion of the basin bounded by the Mt. Cefalone fault along two intersecting profiles trending NNE-SSW (CF-Dip, 1195 m-long) and WNW-ESE (CF-Strike, 1315-m long). We combined high-resolution depth-migrated reflection sections with P-wave velocity and electrical resistivity tomography models. CF-Dip profile displays a wedge-like syn-tectonic sedimentary sequence of alluvial and glacial deposits with Vp ∼ 2500–3000 m/s and resistivity > 500 Ωm in the hangingwall of Mt. Cefalone fault, overlying a high-Vp (>4000 m/s) limestone bedrock ∼ 300 m deep. The whole sequence displays reflectors truncated by the Mt. Cefalone fault zone and subsidiary antithetic faults. CF-Strike profile, tied to three 80–110 m-deep boreholes, shows a thick fluvio-lacustrine sequence with low-Vp (<2000 m/s) and low resistivity (<100 Ωm), and a bedrock that deepens to the southeast (>450 m). Single-station ambient noise measurements display Horizontal to Vertical Spectral Ratios with peaks at ∼1 Hz, decreasing to ∼0.8 Hz to the southeast in agreement with the bedrock deepening indicated by seismic profiling. According to our results, the Campo Felice basin is a deep asymmetric half-graben controlled by faulting whose activity likely started before the Middle Pleistocene. Our minimum displacement estimate accrued in the past 0.5 Ma by the Mt. Cefalone fault is in the range of ∼100–250 m.371 26 - PublicationOpen AccessSlip localization on multiple fault splays accommodating distributed deformation across normal fault complexities(2023-10-30)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Deformation across structural complexities such as along-strike fault bends may be accommodated by distributed faulting, with multiple fault splays working to transfer the deformation between two principal fault segments. In these contexts, an unsolved question is whether fault activity is equally distributed through time, with multiple fault splays recording the same earthquakes, or it is instead localized in time and space across the distributed faults, with earthquakes being clustered on specific fault splays. To answer this question, we studied the distributed deformation across a structural complexity of the Mt. Marine fault (Central Apennines, Italy), where multiple fault splays accommodate the deformation throughout the change in strike of the fault. Our multidisciplinary (remote sensing analysis, geomorphological-geological mapping, geophysical and paleoseismological surveys) study identified five principal synthetic and antithetic fault splays arranged over an across-strike distance of 500 m, all of which showing evidence of multiple surface-rupturing events during the Late Pleistocene-Holocene. The fault splays exhibit different and variable activity rates, suggesting that fault activity is localized on specific fault splays through space and time. Nonetheless, our results suggest that multiple fault splays can rupture simultaneously during large earthquakes. Our findings have strong implications on fault-based seismic hazard assessments, as they imply that data collected on one splay may not be representative of the behaviour of the entire fault. This can potentially bias seismic hazard calculations.254 10 - PublicationOpen AccessA multidisciplinary approach gives new insights into the shallow structural setting of the Val d'Agri oilfield (Basilicata, southern Apennines, Italy);(2023-04)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Val d’Agri (VA) oilfield in the Lucanian Apennines (southern Italy), represents the largest onshore in Europe. Since the 1990's, hydrocarbons are produced from a fractured carbonate reservoir with an average extraction rate of 7*104 barrels/day of oil and 3*106 Smc/day of gas. Part of the wastewater has been re-injected since 2006 into a marginal portion of the reservoir by a high-rate well (Costa Molina 2, CM2). Charged by the Italian oil and gas safety authority, the National Institute of Geophysics and Volcanology (INGV) monitors the VA industrial hydrocarbon operations through the research activity of a dedicated working group (CMS, Centro di Monitoraggio del Sottosuolo) and according to the governmental monitoring guidelines. The CMS operates the real-time acquisition and offline analyses of seismic data recorded at 56 seismic stations associated with public and private local seismic networks. The principal aim of the CMS is to investigate the risk associated with industrial activities that can induce or trigger seismic events by producing stress changes within the upper crustal volume. Previous works have highlighted a spatio-temporal relationship between micro-seismicity (ML ≤ 2.2) and wastewater injection, delineating a NE-dipping back-thrust near the CM2. Part of the microseismicity recorded in the southwestern portion of the VA has also been associated with the water level changes of the Pertusillo lake. One of the main challenges is to define an accurate structural setting of the VA to understand the potential of earthquakes in the area and investigate the presence of active faults. The VA consists of a Quaternary extensional tectonic basin and it is one of the areas of highest seismic hazard in Italy (Basilicata, 1857, M7 earthquake). The basin is bounded by two parallel and oppositely dipping normal fault systems: the Monti della Maddalena Fault System (MMFS) on its western side and the Eastern Agri Fault System (EAFS) on the eastern one. The characterization of the ongoing tectonic activity of the MMFS and EAFS, and their hierarchical relationship is still generating debate among the scientific community. We adopt a multidisciplinary approach based on detailed geological-structural, geophysical and seismic analyses, and electrical resistivity tomography, aimed at reconstructing the subsurface geology of the area and recognizing and characterizing the active and capable faults, and the associated potential for local seismic hazard. We present and discuss the results of this work, focusing on the relative location of seismic events that occurred between March and June 2022. The outcomes allow inferring interesting geologic constraints, highlighting the relationships between the distribution of local seismicity and the structural setting of the area in the uppermost crust (depth < 6 km).73 25 - PublicationOpen AccessActive fault detection and characterization by ultrashallow seismic imaging: A case study from the 2016 Mw 6.5 central Italy earthquake(2023-02-17)
; ; ; ; ; ; ; ; ; We present the first high-resolution ultrashallow seismic image of a normal fault segment that ruptured the surface during the Mw 6.5 2016 Norcia earthquake (central Italy). This is the only fault, in the entire activated 25 km-long system, cutting a thick succession of Quaternary deposits, with an associated 3-m-high cumulative scarp. A 190-m-long profile crossing the fault was acquired and analyzed combining reflection seismic, non-linear multiscale refraction P-wave tomography and multi-channel analysis of surface waves. The joint interpretation of the seismic reflection, P- and S-wave velocity images unravels a 100-m-thick sequence of sandy-gravel alluvial fans, disrupted by a main normal fault zone, named as Valle delle Fonti fault (Vf1), which branches upward into three splays. The eastern splay of Vf1 matches with the 2016 coseismic surface rupture. Near-surface truncated reflections and growth strata in the hanging wall of the western and intermediate splays attest to their activity in Late Pleistocene-Holocene times. We also detect an additional normal fault in the footwall of Vf1, probably inactive since the Late Pleistocene. Comparing the seismic images with the Poisson's coefficient model and with the results of a previous electrical resistivity tomography, we constrain the lithology and the hydraulic behavior of the uppermost 50 m of the fault. A steep, W-dipping zone with high-Vp, very high Poisson's coefficient and low resistivity correlates with the eastern splay of Valle delle Fonti fault and unravels a water-saturated region. These results suggest that the fault zone may act as a partial barrier for horizontal fluid flow. Our findings indicate that the active fault zone detected by seismic imaging is much wider than what previously estimated from surface geological analyses. In terms of surface faulting hazard, this study confirms the effectiveness of high-resolution seismic surveys in defining the geometry and physical properties of active fault zones.117 15 - PublicationEmbargoA geophysical multidisciplinary approach to investigate the shallow subsoil structures in volcanic environment: The case of Ischia Island(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Esposito, Roberta; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The ability to image the underground structures of volcanoes is limited by the precision, resolution and pene tration depth of each single geophysical method. In order to improve the knowledge of specific volcanic edifices and to better understand the general behavior of structures, the use of a combination of methods is strongly recommended to exploit and maximize their complementary capabilities of resolution and penetration depths. In this work a large dataset of seismic and electromagnetic measurements has been used to provide a more detailed and improved geophysical image of the shallower portion of the northern sector of Ischia Island(Campania region, Italy), severely hit by the August 21, 2017 earthquake (Mw 3.9). We analysed data by using different methodologies: Horizontal-to-Vertical Spectral Ratio (HVSR), seismic array technique (f k),polarization analysis and Time Domain ElectroMagnetic (TDEM) survey. These methods are sensitive in a different way to tectonic features, lithologies, layer geometry and fluid distribution. Thus, their combination is useful for studying sites with complex crustal structures such as Ischia island, which is characterized by a well-developed geothermal system linked to the presence of a shallow magmatic body. Results of our study provides detailed information of the physical properties of the subsoil through: 1) the spatial distribution of the amplification parameters of ground motion, showing frequency peaks below 1 Hz and/or between 1 Hz and 5 Hz; 2) the definition of the velocity models up to 600 m depth, with shear wave velocities ranging from 150 m/s for the shallower layers to 2500 m/s for the half space; 3) the recognition of the correlation between the principal fault structures and polarization directions of the noise wavefield, mostly oriented along EW and NE-SW directions; 4) the resistivity models of the first 80 m depth with high resistivity values of the shallow layers in the range 50–100 Ω.m and low resistivity values of the bottom layers in the range 1–10 Ω.m.1360 7 - PublicationOpen AccessPaleoseismological surveys for the identification of capable faults in urban areas: the case of the Mt. Marine Fault (Central Apennines, Italy).(2022-09-25)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In order to constrain the Fault Displacement Hazard (FDH) of the town of Pizzoli, located 10 km NW of L’Aquila (Central Apennines, Italy), we performed two paleoseismological trenches across multiple fault splays within the hanging wall of the main Mt. Marine active normal fault. Our trenches highlighted the presence of five faults arranged both synthetic and antithetic to the main fault. The fault splays are distributed within an across-strike distance of about 500 m. Each fault segment shows evidence of repeated surface-rupturing earthquakes occurring throughout the Late Pleistocene-Holocene, proving their capability of rupturing the surface during recent earthquakes. Our study shows that multiple parallel fault splays belonging to a principal segmented fault are active during the same time interval, although the slip rates of single faults may be different through time. Our work reiterates the importance of performing paleoseismological investigation for assessing FDH in urban areas.97 54 - PublicationRestrictedIndagini geofisiche nell’hortus dei Praedia di Iulia Felix(2022)
; ; ; ; ; ; ; In questo lavoro vengono presentati i risultati delle indagini geofisiche condotte da un gruppo di ricercatori dell’Istituto Nazionale di Geofisica e Vulcanologia di Roma nell’hortus dei Praedia Iuliae Felicis1. Tali attività hanno costituito uno dei momenti iniziali del più ampio programma PRAEDIA e, in particolare, dello studio del complesso di proprietà di Iulia Felix. In questo contesto, l’hortus sembrava configurarsi come un settore di particolare interesse per lo studio delle fasi edilizie dell’edificio. Alcuni saggi stratigrafici realizzati nel corso degli anni Novanta avevano infatti portato in luce, in corrispondenza dell’ampio parco del complesso, i resti spoliati di strutture murarie apparentemente riferibili all’età ellenistica2.42 2 - PublicationOpen AccessHigh‐Resolution Seismic Profiling in the Hanging Wall of the Southern Fault Section Ruptured During the 2016 M w 6.5 Central Italy Earthquake(2021-08-18)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ; ; The Vettore–Bove normal fault system in central Italy ruptured during the 2016 MW 6.5 Norcia earthquake causing extensive surface faulting. At the Pian Grande di Castelluccio hanging wall basin, along the southern section of the fault ruptured during the MW 6.5 mainshock, we performed a high-resolution seismic reflection/refraction experiment aimed at (a) imaging the shallow pattern of the fault system, and (b) reconstructing the architecture of the continental infill. We collected three profiles for a total length of ∼8 km. We used a reflection processing flow and non-linear refraction tomography to obtain migrated stack sections and P-wave velocity images resolved down to the depth of the pre-Quaternary substratum. The main profile in the northern part of the basin crosses the westernmost splays of the ruptured fault zone striking N150°–170°. Seismic imaging unravels a ∼1 km-wide fault zone comprising three W-throwing splays and subsidiary faults, which affect the continental infill and produce a minimum aggregate Quaternary throw of ∼400 ± 100 m. Recent deformation is localized in this part of the surveyed fault section, attesting active displacement accumulation of the Vettore–Bove fault system. The other profiles in the central-southern part of the basin show additional faults, likely striking N20°–40° and which concurred to generate a ∼500 m-deep depocenter. These faults were mostly active during an early extensional phase; however, one of them likely displaces shallow layers with a throw close to the resolution limit of seismic data (<10 m), suggesting activity in the Late Pleistocene.555 80 - PublicationOpen AccessMulti-Parametric Imaging of Etruscan Chamber Tombs: Grotte Di Castro Case Study (Italy)(2021-08-05)
; ; ;Florindo, Federico; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;A multi-parametric approach that involves the use of different geophysical methods coupled with geochemical data allowed us to identify undiscovered archeological burials in a funerary area of the Grotte di Castro Etruscan settlement. In particular, we tested the suitability of the capacitive resistivity method and the presence of Radon in soil for the identification of burials calibrating their outcomes over coincident survey profiles with standard geophysical techniques routinely applied for archaeological prospections. Soil Radon data were acquired both in a grid and along a profile to highlight anomalous gas concentrations, whereas electrical resistivity and ground-penetrating radar measurements were conducted on overlapping profiles to depict the electrical and electromagnetic subsurface distribution. Data integration showed a series of anomalies, suggesting the presence of multiple burials starting from a depth of approximately 1.5 m below the terrain surface. Slight anomalies of Radon in the soil were found to correspond to most of the recovered geophysical ones. Our results pointed out the effectiveness of geophysical method integration in archeological prospecting with the novelty of the joint use of Radon in soil measurements and capacitive resistivity tomography. The latter provided reliable results and can be considered as a standalone technique in archaeological surveys555 26