Options
Taylor, Isabelle A
Loading...
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessNew Insights Into the Relationship Between Mass Eruption Rate and Volcanic Column Height Based On the IVESPA Data Set(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;Rapid and simple estimation of the mass eruption rate (MER) from column height is essential for real-time volcanic hazard management and reconstruction of past explosive eruptions. Using 134 eruptive events from the new Independent Volcanic Eruption Source Parameter Archive (IVESPA, v1.0), we explore empirical MER-height relationships for four measures of column height: spreading level, sulfur dioxide height, and top height from direct observations and as reconstructed from deposits. These relationships show significant differences and highlight limitations of empirical models currently used in operational and research applications. The roles of atmospheric stratification, wind, and humidity remain challenging to detect across the wide range of eruptive conditions spanned in IVESPA, ultimately resulting in empirical relationships outperforming analytical models that account for atmospheric conditions. This finding highlights challenges in constraining the MER-height relation using heterogeneous observations and empirical models, which reinforces the need for improved eruption source parameter data sets and physics-based models.82 40 - PublicationOpen AccessThe Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): A new observational database to support explosive eruptive column model validation and development(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ;Eruptive columnmodels are powerful tools for investigating the transport of volcanic gas and ash, reconstructing past explosive eruptions, and simulating future hazards. However, the evaluation of these models is challenging as it requires independent estimates of themainmodel inputs (e.g.mass eruption rate) and outputs (e.g. column height). There exists no database of independently estimated eruption source parameters (ESPs) that is extensive, standardized, maintained, and consensus-based. This paper introduces the Independent Volcanic Eruption Source Parameter Archive (IVESPA, ivespa.co.uk), a community effort endorsed by the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Commission on Tephra HazardModelling.We compiled data for 134 explosive eruptive events, spanning the 1902-2016 period, with independent estimates of: i) total erupted mass of fall deposits; ii) duration; iii) eruption column height; and iv) atmospheric conditions. Crucially, we distinguish plume top versus umbrella spreading height, and the height of ash versus sulphur dioxide injection. All parameter values provided have been vetted independently by at least two experts. Uncertainties are quantified systematically, including flags to describe the degree of interpretation of the literature required for each estimate. IVESPA also includes a range of additional parameters such as total grain size distribution, eruption style, morphology of the plume (weak versus strong), and mass contribution from pyroclastic density currents, where available. We discuss the future developments and potential applications of IVESPA and make recommendations for reporting ESPs to maximize their usability across different applications. IVESPA covers an unprecedented range of ESPs and can therefore be used to evaluate and develop eruptive column models across a wide range of conditions using a standardized dataset.218 19