Options
Lucchi, Renata Giulia
Loading...
Preferred name
Lucchi, Renata Giulia
Official Name
Lucchi, Renata Giulia
Alternative Name
Lucchi R
Lucchi Renata
Lucchi Renata Giulia
Lucchi RG
ORCID
Scopus Author ID
6701711144
9 results
Now showing 1 - 9 of 9
- PublicationRestrictedReconstruction of the Virtual Geomagnetic Pole (VGP) path at high latitude for the last 22 kyr: The role of radial field flux patches as VGP attractor(2022)
; ; ; ; ; ; ; ; ; Reconstruction of geomagnetic field changes has a strong potential to complement geodynamo modeling and improve the understanding of Earth’s core dynamics. Recent works based on geomagnetic measure-ments pointed out that over the last two decades the position of the north magnetic pole has been largely determined by the influence of two competing flux lobes under Canada and Siberia. In order to understand if the waxing and waning of magnetic flux lobes have driven the path of geo-magnetic paleopoles in the past, we present an augmented and updated record of the chronology and paleosecular variation of geomagnetic field for the last 22 kyr derived from sedimentary cores collected along the north-western margin of Barents Sea and western margin of Spitsbergen (Arctic). The path of the virtual geomagnetic pole (VGP) has been reconstructed over this time period and compared with the maps of the radial component of the geomagnetic field at the core-mantle boundary, obtained from the most recent models. The VGP path includes centuries during which the VGP position is stable and cen-turies during which its motion accelerates. We recognize both clockwise and counterclockwise VGP paths, mostly developing inside the surface projection of the inner core tangent cylinder in the Arctic region. The VGP path seems to follow the appearance of Brpatches of normal magnetic flux, especially those located under Siberia and Canada areas, but also those that may cause peculiar paleomagnetic features such as the Levantine Iron Age Anomaly.298 45 - PublicationRestrictedA refined age calibrated paleosecular variation and relative paleointensity stack for the NW Barents Sea: Implication for geomagnetic field behavior during the Holocene(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; Reconstruction of Paleomagnetic Secular Variation (PSV) of the geomagnetic field is fundamental both to assess geodynamo models and to obtain age constraints for rocks, sediments and archaeological material. We present refined age-calibrated Holocene PSV and relative paleointensity (RPI) stack curves derived from Arctic marine sediments (Northwestern Barents Sea). The Holocene sections of four sedimentary cores were correlated on the basis of paleomagnetic trends and age models, and stacked. The resultant composite PSV and RPI Holocene records (NBS stack) and the reconstructed Holocene Virtual Geomag- netic Pole (VGP) path were evaluated in comparison with the most recent paleomagnetic stack curves and geomagnetic field models. The data indicate that during the Holocene time, the VGPs moved within the superficial projection of the inner core tangent cylinder, with the exception of short time intervals around 5600 and 3200 cal yr BP when VGPs extended to lower latitudes. These deviations might reflect regional geomagnetic features, such as persistent geomagnetic flux lobes at core-mantle boundary. Our data confirm that the large VGP shift observed around 5600 cal yr BP is the result of an increased radial magnetic field at the core-mantle boundary over North America, whilst the VGP shift around 3200 cal yr BP represents a major swing to middle latitudes toward the Middle East and might be associated to a regional high paleointensity peak, known as Levantine Iron Age Anomaly (LIAA).582 9 - PublicationOpen AccessA High‐Resolution Geomagnetic Relative Paleointensity Record From the Arctic Ocean Deep‐Water Gateway Deposits During the Last 60 kyr(2019-05)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We present a paleomagnetic and rock magnetic data set from two long sediment cores collected from Bellsund and Isfjorden contourite drifts located on the eastern side of the Fram Strait (western Spitsbergen margin). The data set gave the opportunity to define the behavior of the past geomagnetic field at high latitude and to constrain the palaeoclimatic events that occurred in a time framework spanning marine isotope stage 3 to the Holocene. A high‐resolution age model was reconstructed by coupling 26 radiocarbon ages and high‐resolution relative paleointensity and paleosecular variation of the geomagnetic field records for the last 60 kyr. We show the variation of the geomagnetic field at high latitudes, pointing out variability during periods of regular paleosecular variation (normal polarity) as well as during the most recent geomagnetic excursions, and we provide a high‐resolution record of the Laschamps excursion. Cross‐cores correlation allowed us to outline major, climate‐related, sedimentary changes in the analyzed stratigraphic sequence that includes the meltwater events MWP‐1a and MWP‐19ky, and the Heinrich‐like events H1, H2, H4, and H6. This contribution confirms that rock magnetic and paleomagnetic analysis can be successfully used as a correlation and dating tool for sedimentary successions at high latitudes, where accelerator mass spectrometry dates and oxygen isotope analyses are often difficult to obtain for the scarcity of calcareous microfossils and the uncertainties related to data calibration may be significant, as well as the complexity of water mass characteristics and dynamics through climate changes.1131 56 - PublicationRestrictedPaleomagnetism and rock magnetism from sediments along a continental shelf-to-slope transect in the NW Barents Sea: Implications for geomagnetic and depositional changes during the past 15 thousand years(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Paleomagnetic and rock magnetic data were measured on glaciomarine silty-clay successions along an E-W sediment-core transect across the continental shelf and slope of the Kveithola paleo-ice stream system (south of Svalbard, north-western Barents Sea), representing a stratigraphic interval spanning the last deglaciation and the Holocene. The records indicate that magnetite is the main magnetic mineral and that magnetic minerals are distinctly less abundant on the shelf than at the continental slope. The paleomagnetic properties allow for the reconstruction of a well-defined characteristic remanent magnetization (ChRM) throughout the sedimentary successions. The stratigraphic trends of rock magnetic and paleomagnetic parameters are used for a shelf-slope core correlation and sediment facies analysis is applied for depositional processes reconstruction. The new paleomagnetic records compare to the PSV and RPI variation predicted for the core sites by a simulation using the global geomagnetic field variation models SHA.DIF.14k and CALS7K.2 and closest PSV and RPI regional stack curves. The elaborated dataset, corroborated by available 14C ages, provides a fundamental chronological framework to constrain the coupling of shelf-slope sedimentary processes and environmental changes in the NW Barents Sea region during and after deglaciation.599 8 - PublicationRestrictedGeomagnetic palaeosecular variation around 15 ka ago from NW Barents Sea cores (south of Svalbard)(2016-02-02)
; ; ; ;Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Macrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Lucchi, Renata Giulia; INOGS; ; The sedimentary sequence deposited during the deglaciation phase following the last glacial maximum in the Storfjorden trough, on the northwestern Barents Sea south of Svalbard, was sampled with 10 piston and gravity cores during the SVAIS and EGLACOM cruises. Three cores (SV-02, SV-03 and SV-05) collected on the upper continental slope are characterized by a thin (20–40 cm) Holocene interval and a thick (up to 4.5 m in core SV-03) late Pleistocene sequence of finely laminated fine-grained sediments that have been interpreted as plumites deposited during the Melt Water Pulse 1a (MWP-1a). Radiocarbon ages obtained at the top and bottom of this stratigraphic interval revealed that deposition occurred during less than two centuries at around 15 ka ago, with a very high sedimentary rate exceeding 3 cm a−1. We studied the palaeomagnetic and rock magnetic properties of this interval, by taking magnetic measurements at 1 cm spacing on u-channel samples collected from the three cores. The data show that this sequence is characterized by good palaeomagnetic properties and the palaeomagnetic and rock magnetic trends may be correlated at high resolution from core to core. The obtained palaeomagnetic data therefore offer the unique opportunity to investigate in detail the rate of geomagnetic palaeosecular variation (PSV) in the high northern latitudes at a decadal scale. Notwithstanding the palaeomagnetic trends of the three cores may be closely matched, the amplitude of directional PSV and the consequent virtual geomagnetic pole (VGP) scatter (S) is distinctly higher in one core (SV-05) than in the other two cores (SV-02 andSV-03). This might result from a variable proportion of two distinct populations of magnetic minerals in core SV-05, as suggested by the variable tendency to acquire a gyromagnetic remanent magnetization at high fields during the AF demagnetization treatment. For the plumite interval of cores SV-02 and SV-03, where the magnetic mineralogy is uniform and magnetite is the main magnetic carrier, a S value of about 9◦ is obtained. We consider this value as a reliable approximation of palaeomagnetic secular variation at a latitude of 75◦N over a time interval spanning a couple of centuries around 15 ka ago.378 71 - PublicationOpen AccessMarine sedimentary record of Meltwater Pulse 1a in the NW Barents Sea continental margin(2015-11-20)
; ; ; ; ; ; ; ;Lucchi, R. G.; INOGS ;Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Camerlenghi, A.; INOGS ;Macrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Rebesco, M.; INOGS ;Pedrosa, M. T; CSIC -‐ Universidad de Granada ;Giorgetti, G.; Università di Siena; ; ; ; ; ; The upper continental slope of the Storfjorden- Kveithola Trough Mouth Fans (NW Barents Sea) contains a several m-thick late Pleistocene sequence of plumites composed of laminated mud interbedded with sand/silt layers. Radiocarbon ages revealed that deposition occurred during about 130 years at a very high sedimentation rate of 3.4 cm a-1, at about 7 km from the present shelf break. Palaeomagnetic and rock magnetic analyses confirm the existence of a prominent, short-living sedimentary event. The plumites appear laterally continuous and were correlated with the sedimentary sequences described west of Svalbard and neighboring glacial depositional systems representing a major event at regional scale appointed to correspond to the deep-sea sedimentary record of Meltwater Pulse-1a. We also present new sedimentological and geochemical insights, and multi-beam data adding information on the palaeoenvironmental characteristics during MWP-1a and ice sheet decay in the NW Barents Sea.326 401 - PublicationRestrictedPostglacial sedimentary processes on the Storfjorden and Kveithola trough mouth fans: impact of extreme glacimarine sedimentation(2013-12)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Lucchi, R. G.; OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Borgo Grotta Gigante 42/c, I-34010 Sgonico, Trieste, Italy ;Camerlenghi, A.; OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Borgo Grotta Gigante 42/c, I-34010 Sgonico, Trieste, Italy ;Rebesco, M.; OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Borgo Grotta Gigante 42/c, I-34010 Sgonico, Trieste, Italy ;Colmenero-Hidalgo, E.; Department of Geology, Faculty of Sciences, University of Salamanca, E-37008 Salamanca, Spain ;Sierro, F. J.; Department of Geology, Faculty of Sciences, University of Salamanca, E-37008 Salamanca, Spain ;Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Urgeles, R.; Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain ;Melis, R.; Dipartimento di Geoscienze, Università di Trieste, Via E. Weiss 2, I-34128 Trieste, Italy ;Morigi, C.; Department of Stratigraphy, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen K, Denmark ;Bárcena, M.-A.; Department of Geology, Faculty of Sciences, University of Salamanca, E-37008 Salamanca, Spain ;Giorgetti, G.; Dipartimento di Scienze della Terra, Università di Siena, via Laterina 8, I-53100 Siena, Italy ;Villa, G.; Dipartimento di Fisica e Scienze della Terra “Macedonio Melloni”, Parco Area delle Scienze, 157A, 43124 Parma, Italy ;Persico, D.; Dipartimento di Fisica e Scienze della Terra “Macedonio Melloni”, Parco Area delle Scienze, 157A, 43124 Parma, Italy ;Flores, J.-A.; Department of Geology, Faculty of Sciences, University of Salamanca, E-37008 Salamanca, Spain ;Rigual-Hernández, A. S.; Department of Geology, Fa ;Pedrosa, M. T.; Departament d'Estratigrafia, Paleontologia i Geociències Marines, Universitat de Barcelona, Facultat de Geologia, C/Martí i Franquès, s/n, E-08028 Barcelona, Spain ;Macrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Caburlotto, A.; OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Borgo Grotta Gigante 42/c, I-34010 Sgonico, Trieste, Italy; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The depositional history of the Storfjorden and Kveithola trough-mouth fans (TMFs) in the northwestern Barents Sea has been investigated within two coordinated Spanish and Italian projects in the framework of the International Polar Year (IPY) Activity 367, NICE STREAMS. The investigation has been conducted using a multidisciplinary approach to the study of sediment cores positioned on high-resolution multibeam bathymetry and TOPAS/CHIRP sub-bottom profiles. Core correlation and the age model were based on 27 AMS 14C samples, rock magnetic parameters, lithofacies sequences, and the presence of marker beds including two oxidized layers marking the post Last Glacial Maximum (LGM) inception of deglaciation (OX-2) and the Younger Dryas cold climatic event (OX-1). Sediment facies analysis allowed the distinction of a number of depositional processes whose onset appears closely related to ice stream dynamics and oceanographic patterns in response to climate change. The glacigenic diamicton with low water content, high density, and high shear strength, deposited during glacial maxima, indicates ice streams grounded at the shelf edge. Massive release of IRD occurred at the inception of deglaciation in response to increased calving rates with possible outer ice streams lift off and collapse. The presence of a several-meter-thick sequence of interlaminated sediments deposited by subglacial outbursts of turbid meltwater (plumites) indicates rapid ice streams' melting and retreat. Crudely-layered and heavily-bioturbated sediments were deposited by contour currents under climatic/environmental conditions favorable to bioproductivity. The extreme sedimentation rate of 3.4 cm a− 1 calculated for the plumites from the upper-slope area indicates a massive, nearly instantaneous (less than 150 years), terrigenous input corresponding to an outstanding meltwater event. We propose these interlaminated sediments to represent the high-latitude marine record of MeltWater Pulse 1a (MWP-1a). Different bathymetric and oceanographic conditions controlled locally the mode of glacial retreat, resulting in different thickness of plumites on the upper continental slope of the Storfjorden and Kveithola TMFs. It is possible that the southern part of Storfjorden TMF received additional sediments from the deglaciation of the neighboring Kveithola ice stream.618 55 - PublicationRestrictedA Holocene paleosecular variation record from the northwestern Barents Sea continental margin(2011-11-01)
; ; ; ; ; ;Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Macrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Lucchi, R.; Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Borgo Grotta Gigante 42/c, Sgonico, Trieste I‐34010, Italy ;Rebesco, M.; Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Borgo Grotta Gigante 42/c, Sgonico, Trieste I‐34010, Italy ;Camerlenghi, A.; Istitució Catalana de Recerca i Estudis Avançats, E‐08028 Barcelona, Spain; ; ; ; A high‐resolution paleomagnetic and rock magnetic study has been carried out on sediment cores collected in glaciomarine silty‐clay sequences from the continental shelf and slope of the southern Storfjorden trough‐mouth fan, on the northwestern Barents Sea continental margin. The Storfjorden sedimentary system was investigated during the SVAIS and EGLACOM cruises, when 10 gravity cores, with a variable length from 1.03 m to 6.41 m, were retrieved. Accelerator mass spectrometry (AMS) 14C analyses on 24 samples indicate that the cores span a time interval that includes the Holocene, the last deglaciation phase and in some cores the last glacial maximum. The sediments carry a well‐defined characteristic remanent magnetization and have a valuable potential to reconstruct the paleosecular variation (PSV) of the geomagnetic field, including relative paleointensity (RPI) variations. The paleomagnetic data allow reconstruction of past dynamics and amplitude of the geomagnetic field variations at high northern latitudes (75°–76° N). At the same time, the rock magnetic and paleomagnetic data allow a high‐resolution correlation of the sedimentary sequences and a refinement of their preliminary age models. The Holocene PSV and RPI records appear particularly sound, since they are consistent between cores and they can be correlated to the closest regional stacking curves (UK PSV, FENNOSTACK and FENNORPIS) and global geomagnetic model for the last 7 ka (CALS7k.2). The computed amplitude of secular variation is lower than that outlined by some geomagnetic field models, suggesting that it has been almost independent from latitude during the Holocene.599 103 - PublicationRestrictedA stacked record of relative geomagnetic paleointensity for the past 270 kyr from the western continental rise of the Antarctic Peninsula(2006)
; ; ; ; ;Macrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Lucchi, R.; GRC Geociències Marines, Departament d'Estratigrafia, P. i Geociències Marines, Universitat de Barcelona, C/ Martí i Franquès, ;Rebesco, M.; Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010 Sgonico (Trieste), Italy; ; ; Paleomagnetic and rock magnetic investigations were carried out on four gravity cores recovered from the western continental rise of the Antarctic Peninsula during the SEDANO II cruise of RV OGS-Explora. The studied cores, each about 6.5 m-long, were collected at a depth of 3700–4100 m below the sea level, on the distal gentle side of sediment Drift 7, and consist of very fine-grained sediments spanning through various glacial–interglacial cycles. Detailed analysis of the paleomagnetic and rock magnetic data allowed to reconstruct relative paleointensity (RPI) records (NRM20 mT/ARM20 mT) for each core.We established a refined age model for the studied sequences by correlating individual SEDANO RPI curves to the global RPI stack SINT-800 [Y. Guyodo, J.-P. Valet, Global changes in intensity of the Earth's magnetic field during the past 800 kyr, Nature 399 (1999) 249–252]. The individual normalized SEDANO RPI records are in mutual close agreement; they were thus merged in a RPI stacking curve spanning the last 270 kyr and showing a low standard deviation. This study also points out that RPI records may provide a viable tool to date otherwise difficult-to-date sedimentary sequences, such as those deposited along peri-Antarctic margins. The new RPI chronology indicates that the sampled sedimentary sequence is younger than previously thought and allows a new high-resolution correlation to oxygen isotope stages. Furthermore, we recognized variations in the rock magnetic parameters that appear to be climatically-driven, with changes in the relative proportion of two magnetic mineral populations with distinct coercivities. Rock magnetic and lithological trends observed in the SEDANO cores indicate that during the climatic cycles of the Late Pleistocene this sector of the peri-Antarctic margin was subjected to subtle, yet identifiable, environmental changes, confirming a relatively higher instability of theWest Antarctic ice sheet with respect to the East Antarctic counterpart.311 32