Options
Di Benedetto, Francesco
Loading...
Preferred name
Di Benedetto, Francesco
ORCID
2 results
Now showing 1 - 2 of 2
- PublicationRestrictedInterplay between abiotic and microbial biofilm-mediated processes for travertine formation: Insights from a thermal spring (Piscine Carletti, Viterbo, Italy)(2022-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;Active hydrothermal travertine systems are ideal environments to investigate how abiotic and biotic processes affect mineralization mechanisms and mineral fabric formation. In this study, a biogeochemical characterization of waters, dissolved gases, and microbial mats was performed together with a mineralogical investigation on travertine encrustations occurring at the outflow channel of a thermal spring. The comprehensive model, compiled by means of TOUGHREACT computational tool from measured parameters, revealed that mineral phases were differently influenced by either abiotic conditions or microbially driven processes. Microbial mats are shaped by light availability and temperature gradient of waters flowing along the channel. Mineralogical features were homogeneous throughout the system, with euhedral calcite crystals, related to inorganic precipitation induced by CO2 degassing, and calcite shrubs associated with organomineralization processes, thus indicating an indirect microbial participation to the mineral deposition (microbially influenced calcite). The microbial activity played a role in driving calcite redissolution processes, resulting in circular pits on calcite crystal surfaces possibly related to the metabolic activity of sulfur-oxidizing bacteria found at a high relative abundance within the biofilm community. Sulfur oxidation might also explain the occurrence of gypsum crystals embedded in microbial mats, since gypsum precipitation could be induced by a local increase in sulfate concentration mediated by S-oxidizing bacteria, regardless of the overall undersaturated environmental conditions. Moreover, the absence of gypsum dissolution suggested the capability of microbial biofilm in modulating the mobility of chemical species by providing a protective envelope on gypsum crystals.38 1 - PublicationOpen AccessNanoscale surface modification of Mt. Etna volcanic ashesAshes emitted during volcanic explosive activity present peculiar surface chemical and mineralogical features related in literature to the interaction in the plume of solid particles with gases and aerosols. The compositional differences of magmas and gases, the magnitude, intensity and duration of the emission and the physical condition during the eruption, strongly influence the results of the modification processes. Here we report the characterization of the products emitted during the 2013 paroxysmal activity of Mt. Etna. The surface features of the ash particles were investigated through X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM) allowing the analysis at nanometer scale. TEM images showed on the surface the presence of composite structures formed by Ca, Mg and Na sulphates and halides and of droplets and crystals of chlorides; nanometric magnesioferrite and metallic iron dendrites are observable directly below the surface. From the chemical point of view, the most external layer of the volcanic glassy particles (<5 nm), analysed by XPS, presents depletion in Si, Mg, Ca, Na and K and strong enrichment in volatile elements especially F and S, with respect to the inner zone, which represents the unaltered counterpart. Below this external layer, a transition glassy shell (thick 50–100 nm) is characterized by Fe, Mg and Ca enrichments with respect to the inner zone. We propose that the ash particle surface composition is the result of a sequence of events which start at shallow depth, above the exsolution surface, where gas bubbles nucleate and the interfaces between bubbles and melt represent proto-surfaces of future ash particles. Enrichment of Ca, Mg and Fe and halides may be due to the early partition of F and Cl in the gas phase and their interaction with the melt layer located close to the bubbles. Furthermore the formation of volatile SiF4 and KF explain the observed depletion of Si and K. The F enrichment in the external 50 nm thick layer of the glassy particles suggests the resorption of this element during the rise from depth less than 400 m below the summit vent. During the eruption, the gas/ash interaction persists inside the plume where further changes on the particle surface occurs. Gaseous S, Cl and F react causing the formation of solid Ca, Mg, Na and K compounds, while SiF4 was released as volatile phase and HF was physisorbed. Finally, in the low temperature plume zone, halides previously formed continuously react with gases producing sulfates. 2015 Elsevier Ltd. All rights reserved.
271 65