Options
Università di Bologna
53 results
Now showing 1 - 10 of 53
- PublicationOpen AccessDeformation induced by distributions of single forces in a layered half-space: EFGRN/EFCMPIn the present paper we introduce a numerical model for the representation of displacement, strain and stress due to single forces embedded in a layered elastic half-space. The code EFGRN/EFCMP (Elastic Forces GReeN functions/Elastic Forces CoMPutation) is able to represent the mechanical effects due to pre-assigned distributions of single forces. Even if internal deformation sources can be described by distributions of equivalent body forces with vanishing resultant and moment, single forces are employed in geophysics to represent hydraulic and/or lithostatic loads, effects of internal density anomalies, and even some kind of seismic events. A distribution of single forces is also used to describe the effects of an inelastic inclusion located inside an elastic medium. In fact, the recent literature shows that poro-elastic and thermo-elastic inclusions can be represented using single forces distributed on their boundaries. EFGRN/EFCMP shares the benefits of rapid and semi-analytical calculation offered by the parent code, EFGRN/EFCMP , which is instead suitable for the representation of extended dislocation sources, as seismic faults. The present code also provides an option for computing the effects of a distribution of single forces embedded in a homogeneous half-space, by using the analytical solutions of Mindlin. Accordingly, EFGRN/EFCMP can be a valid support both for the representation of forward models of deformation sources and for the procedures of inversion of geodetic data in a layered medium. We show some applications of the code and we provide several scripts in MATLAB language which help the user to quickly start using EFGRN/EFCMP
123 21 - PublicationOpen AccessSubaerial-submarine morphological changes at Stromboli volcano (Italy) induced by the 2019–2020 eruptive activity(2022-03-01)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; This study analyses the morphological changes induced by eruptive activity at Stromboli volcano (Italy) during and after events occurring during July–August 2019. This period was characterized by intense eruptive activity (two paroxysmal explosions, a two-month-long lava emission, and more intense and frequent “ordinary” explosive activity) that produced significant changes within the region known as Sciara del Fuoco, located on the most unstable, north-western flank of the volcano. Since September 2019, the eruptive activity waned but remained intense, and erosive phenomena continued to contribute to the re-shaping of the Sciara del Fuoco. The morphological changes described here were documented by integrating topographic (PLÉIADES satellite tri-stereo Digital Elevation Models) and multibeam bathymetric data, acquired before, during, and after the paroxysmal events. This allowed the study of the cumulative effect of the different processes and the characterization of the different phases of accumulation/emplacement, erosion, remobilization and re-sedimentation of the volcaniclastic materials. Data acquired at several periods between September 2018 and April 2020, allowed a comparison of the subaerial and submarine effects of the 2019 events. We find evidence of localized, significant erosion following the two pyroclastic density currents triggered by the paroxysmal explosion of the 3 July 2019. We interpret this erosion as being caused by submarine and subaerial landslides triggered by the propagation of pyroclastic density currents down the Sciara del Fuoco slope. Immediately after the explosion, a lava field accumulated on the sub-aerial slope, produced by effusive activity which lasted about two months. Subsequently, the newly emplaced lava, and in particular its breccia, was eroded, with the transfer of material onto the submarine slope. This work demonstrates how repeated topo-bathymetric surveys allowed identification of the slope processes that were triggered in response to the rapid geomorphological variations due to the eruptive activity. The surveys also allowed distinction of whether estimated volumetric losses were the result of single mass-flows or gradual erosive processes, with implications on the related geohazard. Furthermore, this work highlights how submarine slope failures can be triggered by the entry into the water of pyroclastic density currents, even of modest size. These results are important for the development and improvement of an early warning system for tsunami-induced by mass flows, both in Stromboli and for island-based and coastal volcanoes elsewhere, where landslides and pyroclastic density currents can trigger significant, potentially destructive, tsunami waves.123 53 - PublicationOpen Access
63 72 - PublicationRestrictedA New Global Ocean Climatology(2021-08-31)
; ; ; ; ; ; ; ; ; ; ; A new global ocean temperature and salinity climatology is proposed for two time periods: a long time mean using multiple sensor data for the 1900–2017 period and a shorter time mean using only profiling float data for the 2003–2017 period. We use the historical database of World Ocean Database 2018. The estimation approach is novel as an additional quality control procedure is implemented, along with a new mapping algorithm based on Data Interpolating Variational Analysis. The new procedure, in addition to the traditional quality control approach, resulted in low sensitivity in terms of the first guess field choice. The roughness index and the root mean square of residuals are new indices applied to the selection of the free mapping parameters along with sensitivity experiments. Overall, the new estimates were consistent with previous climatologies, but several differences were found. The cause of these discrepancies is difficult to identify due to several differences in the procedures. To minimise these uncertainties, a multi-model ensemble mean is proposed as the least uncertain estimate of the global ocean temperature and salinity climatology.398 20 - PublicationOpen AccessSea-Level Change along the Emilia-Romagna Coast from Tide Gauge and Satellite AltimetryCoastal flooding and retreat are markedly enhanced by sea-level rise. Thus, it is crucial to determine the sea-level variation at the local scale to support coastal hazard assessment and related management policies. In this work we focus on sea-level change along the Emilia-Romagna coast, a highly urbanized, 130 km-long belt facing the northern Adriatic Sea, by analyzing data from three tide gauges (with data records in the last 25–10 years) and related closest grid points from ESA_CCI monthly gridded satellite altimetry. The results reveal that the rate of sea-level rise observed by altimetry is coherent along the coast (2.8 ± 0.5 mm/year) for the period 1993–2019 and that a negative acceleration of −0.3 ± 0.1 mm/year is present, in contrast with the global scale. Rates resulting from tide gauge time series analysis diverge from these values mainly as a consequence of a large and heterogeneous rate of subsidence in the region. Over the common timespan, altimetry and tide gauge data show very high correlation, although their comparison suffers from the short overlapping period between the two data sets. Nevertheless, their combined use allows assessment of the recent (last 25 years) sea-level change along the Emilia-Romagna coast and to discuss the role of different interacting processes in the determination of the local sea level.
141 135 - PublicationRestrictedThe Homogenized Instrumental Seismic Catalog (HORUS) of Italy from 1960 to Present(2020-09-02)
; ; ; ; ; ; ; We implemented an automatic procedure to update in near‐real time (daily to hourly) a homogeneous catalog of Italian instrumental seismicity to be used for forecasting experiments and other statistical analyses. The magnitudes of all events are homogeneously revalued to be consistent with Mw standard estimates made by the Global Centroid Moment Tensor project. For the time interval from 1960 to 15 April 2005, catalogs and online resources available for the Italian area were merged and all magnitudes were homogenized to Mw according to empirical relationships computed using the chi‐square regression method, which properly consider the uncertainties of both variables. From 16 April 2005 to the present, an automatic procedure periodically downloads the data of the online bulletin of the Istituto Nazionale di Geofisica e Vulcanologia and of online moment tensor catalogs from respective websites, merges the different sources, and applies traditional magnitude conversions to Mw. The final catalog is provided on a website for public dissemination.351 136 - PublicationOpen AccessProgetto SPOT - Sismicità Potenzialmente Innescabile Offshore e Tsunami: Report integrato di fine progetto(2020-03-31)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Il progetto SPOT (Sismicità Potenzialmente innescabile Offshore e Tsunami) è stato sviluppato con lo scopo di supportare le Autorità italiane nell'applicazione della Direttiva Europea sulla sicurezza delle operazioni in mare nel settore degli idrocarburi (2013/30/EU), su fondi di cui art. 35 del Decreto Legge 83/2012, e dei decreti italiani che ne derivano (Antoncecchi et al., 2019). Il progetto, della durata di 21 mesi, è stato ideato e finanziato dal Ministero dello Sviluppo Economico italiano – Direzione Generale per la sicurezza delle attività minerarie ed energetiche (DGS-UNMIG) nell’ambito della rete di ricerca CLYPEA, con il supporto tecnico del Dipartimento della Protezione Civile nazionale.304 193 - PublicationOpen AccessBlast-induced liquefaction in silty sands for full-scale testing of ground improvement methods: Insights from a multidisciplinary study(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In the engineering geology field increased attention has been posed in recent years to potential liquefaction mitigation interventions in susceptible sand formations. In silty sands this is a major challenge because, as the fines content increases, vibratory methods for densification become progressively less effective. An alternative mitigation technique can be the installation of Rammed Aggregate Pier® (RAP) columns that can increase the resistance of the soil, accounting for its lateral stress increase and for the stiffness increase from soil and RAP composite response. To investigate the influence of these factors on liquefaction resistance, full-scale blast tests were performed at a silty sand site in Bondeno (Ferrara, Italy) where liquefaction was observed after the 2012 Emilia-Romagna earthquake. A multidisciplinary team of forty researchers carried out devoted experimental activities aimed at better understanding the liquefaction process at the field scale and the effectiveness of the treatment using inter-related methods. Both natural and improved areas were investigated by in-situ tests and later subjected to controlled blasting. The blast tests were monitored with geotechnical and geophysical instrumentation, topographical surveying and geological analyses on the sand boils. Results showed the RAP effectiveness due to the improvement of soil properties within the liquefiable layer and a consequent reduction of the blast-induced liquefaction settlements, likely due to soil densification and increased lateral stress. The applied multidisciplinary approach adopted for the study allowed better understanding of the mechanism involved in the liquefaction mitigation intervention and provided a better overall evaluation of mitigation effectiveness2133 49 - PublicationRestrictedStructural and lithological control on fluid circulation, dilation and ore mineralization (Rio Albano mine, Island of Elba, Italy)(2019-09)
; ; ; ; ; ; ; ; ; We present the results of geological and structural investigation documenting the interaction between hydrothermal fluids and host rock leading to a vein-type ore mineralization at shallow crustal depths (<7 km) in the mining district of the eastern Island of Elba (Italy). Sulfide- and iron-rich veins and breccia in addition to minor massive iron-ore bodies form the mineralized system. Structural mapping and analysis of vein systems, fractures, faults and associated fault rocks as well as fracture opening modes show that the main factors controlling the formation and distribution of the mineralization are lithology, deformation style and deformation intensity. Their interplay led to a positive feedback between the evolution of pore pressure through time, strain localization and the resulting mineralization. Inversion of fault and vein data defines an E-W extensional stress field at the time of faulting, which favoured fluid ingress and pervasive flow within the porous host sandstone, interstitial sulfide precipitation and reduction of the primary bulk porosity. Subsequently, cyclic channelized fluid flow during repeated fluid ingresses caused extensive veining and numerous episodes of breccia formation.217 4 - PublicationOpen AccessComparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period(2016-05-28)
; ; ; ; ; ;Pignalberi, A.; Università di Bologna ;Pezzopane, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Tozzi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;De Michelis, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Coco, I.; Serco Italia; ; ; ; Preliminary Swarm Langmuir probe measurements recorded during March 2015, a period of time including the St. Patrick storm, are considered. Specifically, six time periods are identified: two quiet periods before the onset of the storm, two periods including the main phase of the storm, and two periods during the recovery phase of the storm. Swarm electron density values are then compared with the corresponding output given by the International Reference Ionosphere (IRI) model, according to its three different options for modelling the topside ionosphere. Since the Swarm electron density measurements are still undergoing a thorough validation, a comparison with IRI in terms of absolute values would have not been appropriate. Hence, the similarity of trends embedded in the Swarm and IRI time series is investigated in terms of Pearson correlation coefficient. The analysis shows that the electron density representations made by Swarm and IRI are different for both quiet and disturbed periods, independently of the chosen topside model option. Main differences between trends modelled by IRI and those observed by Swarm emerge, especially at equatorial latitudes, and at northern high latitudes, during the main and recovery phases of the storm. Moreover, very low values of electron density, even lower than 2 × 10^4 cm^−3, were simultaneously recorded in the evening sector by Swarm satellites at equatorial latitudes during quiet periods, and at magnetic latitudes of about ±60° during disturbed periods. The obtained results are an example of the capability of Swarm data to generate an additional valuable dataset to properly model the topside ionosphere.706 401