Options
31 results
Now showing 1 - 10 of 31
- PublicationOpen AccessRelative seismic and tsunami risk assessment for Stromboli Island (Italy)(2022-06-15)
; ; ; ; ; ; ; ; ; ; ; An innovative method of estimating the relative risk of buildings exposed to seismic and tsunami hazards in volcanic islands is applied to Stromboli (Italy), a well-known stratovolcano affected by moderate earthquakes and mass-flow-induced tsunamis. The method uses a pre-existing quali-quantitative analysis to assess the relative risk indices of buildings, which provide comparative results useful for prioritisation purposes, in combination with a historical-geographical settlement analysis consistent with the ‘territorialist’ approach to the urban and regional planning and design. The quali-quantitative analysis is based on a new proposed survey-sheet model, useful to collect building information necessary for the relative risk estimation, whereas the historical-geographical investigation is based on the multi-temporal comparison of aerial and satellite images. The proposal to combine two consolidated methods represents an innovation in estimating relative risk. Considering that Stromboli Island had never been subjected to similar analyses, the results of the relative seismic risk assessment are novel and moreover identify buildings with a fairly-low and spatially-uniform relative risk. The results of the relative tsunami risk assessment are consistent with results of similar past studies, identifying buildings with a higher relative risk index on the northern coast of the island. The combined use of a building-by-building survey with a multi-temporal analysis of settlements allows obtaining a higher detail than previously available for the region. If adequately modified, the proposed combination of methods allows assessing relative risk also considering other geo-environmental hazards and their cascading effects, in a multi-hazard risk assessment perspective.79 75 - PublicationOpen AccessSubaerial-submarine morphological changes at Stromboli volcano (Italy) induced by the 2019–2020 eruptive activity(2022-03-01)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; This study analyses the morphological changes induced by eruptive activity at Stromboli volcano (Italy) during and after events occurring during July–August 2019. This period was characterized by intense eruptive activity (two paroxysmal explosions, a two-month-long lava emission, and more intense and frequent “ordinary” explosive activity) that produced significant changes within the region known as Sciara del Fuoco, located on the most unstable, north-western flank of the volcano. Since September 2019, the eruptive activity waned but remained intense, and erosive phenomena continued to contribute to the re-shaping of the Sciara del Fuoco. The morphological changes described here were documented by integrating topographic (PLÉIADES satellite tri-stereo Digital Elevation Models) and multibeam bathymetric data, acquired before, during, and after the paroxysmal events. This allowed the study of the cumulative effect of the different processes and the characterization of the different phases of accumulation/emplacement, erosion, remobilization and re-sedimentation of the volcaniclastic materials. Data acquired at several periods between September 2018 and April 2020, allowed a comparison of the subaerial and submarine effects of the 2019 events. We find evidence of localized, significant erosion following the two pyroclastic density currents triggered by the paroxysmal explosion of the 3 July 2019. We interpret this erosion as being caused by submarine and subaerial landslides triggered by the propagation of pyroclastic density currents down the Sciara del Fuoco slope. Immediately after the explosion, a lava field accumulated on the sub-aerial slope, produced by effusive activity which lasted about two months. Subsequently, the newly emplaced lava, and in particular its breccia, was eroded, with the transfer of material onto the submarine slope. This work demonstrates how repeated topo-bathymetric surveys allowed identification of the slope processes that were triggered in response to the rapid geomorphological variations due to the eruptive activity. The surveys also allowed distinction of whether estimated volumetric losses were the result of single mass-flows or gradual erosive processes, with implications on the related geohazard. Furthermore, this work highlights how submarine slope failures can be triggered by the entry into the water of pyroclastic density currents, even of modest size. These results are important for the development and improvement of an early warning system for tsunami-induced by mass flows, both in Stromboli and for island-based and coastal volcanoes elsewhere, where landslides and pyroclastic density currents can trigger significant, potentially destructive, tsunami waves.123 53 - PublicationOpen AccessForecasting strong subsequent earthquakes in California clusters by machine learningIn this paper, we propose an innovative machine learning approach called NESTORE, which analyses seismic clusters to forecast strong earthquakes of magnitudes similar or greater to those of the mainshock. The method analyzes the seismicity in the first hours/days after the mainshock and provides the probability of having a strong subsequent earthquake. The analysis is conducted at various stages of time to simulate the increase in knowledge over time. We address the main problem of statistics and machine learning when applied to spatiotemporal variation of seismicity: the small datasets available, on the order of tens or fewer instances, need a more accurate analysis with respect to the classical testing procedures, where hundreds or thousands of data are available. In addition, we develop a more robust NESTORE method based on a jackknife approach (rNESTORE), and we successfully apply it to California seismicity.
37 37 - PublicationOpen AccessWhich Fault Threatens Me Most? Bridging the Gap Between Geologic Data-Providers and Seismic Risk Practitioners(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The aim of the Fault2SHA European Seismological Commission Working Group Central Apennines laboratory is to enhance the use of geological data in fault-based seismic hazard and risk assessment and to promote synergies between data providers (earthquake geologists), end-users and decision-makers. Here we use the Fault2SHA Central Apennines Database where geologic data are provided in the form of characterized fault traces, grouped into faults and main faults, with individual slip rate estimates. The proposed methodology first derives slip rate profiles for each main fault. Main faults are then divided into distinct sections of length comparable to the seismogenic depth to allow consideration of variable slip rates and the exploration of multi-fault ruptures in the computations. The methodology further allows exploration of epistemic uncertainties documented in the database (e.g., main fault definition, slip rates) as well as additional parameters required to characterize the seismogenic potential of fault sources (e.g., 3D fault geometries). To illustrate the power of the methodology, in this paper we consider only one branch of the uncertainties affecting each step of the computation procedure. The resulting hazard and typological risk maps allow both data providers and end-users 1) to visualize the faults that threaten specific localities the most, 2) to appreciate the density of observations used for the computation of slip rate profiles, and 3) interrogate the degree of confidence on the fault parameters documented in the database (activity and location certainty). Finally, closing the loop, the methodology highlights priorities for future geological investigations in terms of where improvements in the density of data within the database would lead to the greatest decreases in epistemic uncertainties in the hazard and risk calculations. Key to this new generation of fault-based seismic hazard and risk methodology are the user-friendly open source codes provided with this publication, documenting, step-by-step, the link between the geological database and the relative contribution of each section to seismic hazard and risk at specific localities138 20 - PublicationOpen AccessActive Extension in a Foreland Trapped Between Two Contractional Chains: The South Apulia Fault System (SAFS)(2020-06-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.710 42 - PublicationRestrictedForecasting strong aftershocks in earthquake clusters from northeastern Italy and western SloveniaIn this study, we propose an analysis of the earthquake clusters that occurred in North-Eastern Italy and western Slovenia from 1977 to today. Given a mainshock generating alarm in the population, we are interested in forecasting if a similar magnitude earthquake will follow. We classify the earthquake clusters associated with mainshocks of magnitude Mm into two classes: if the strongest aftershock has a magnitude >=Mm-1 (swarms or large aftershock seismic sequences) as type A, otherwise (smaller aftershocks seismic sequences) as type B. A large aftershock following a main shock can cause significant damages to already weakened buildings and infrastructures, so a timely advisory information to the civil protection is of great interest for effective decision-making. For the first time, we applied to a new catalogue a pattern recognition algorithm for cluster type forecasting that we developed for all Italy (Gentili and Di Giovambattista, 2017). Thanks to the lower completeness magnitude of the local OGS catalogue, compared to the national one, and to a new version of the algorithm, we were able to lower the threshold of the clusters mainshocks magnitude from 4.5 to 3.7. The method has been validated by rigorous statistical tests. We tested the algorithm on the 1976 highly destructive earthquake cluster (mainshock magnitude 6.5 - the strongest in the last 80 years in the region) and we retrospectively forecasted it as an A cluster. Successful results were obtained also on other three smaller earthquake clusters in 2019.
54 26 - PublicationRestrictedAn inter-disciplinary and multi-scale approach to assess the spatial variability of ground motion for seismic microzonation: the case study of Cavezzo municipality in Northern Italy(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Seismic microzonation represents a basic tool for prevention activity planning and land management. An extensive and detailed microzonation study was performed with reference to the territory of the Municipality of Cavezzo, damaged during the seismic sequence hitting Emilia-Romagna Region, Northern Italy, in 2012. In this paper, we discuss the work carried out to characterize the spatial variability of ground motion amplification due to local soil conditions in the municipality area. An inter- and multi-disciplinary approach is presented, involving geotechnical engineers, geophysicists, geologists and seismologists from different institutions, to thoroughly characterize the territory using complementary techniques with different level of resolution and confidence. A considerable amount of geomorphological, geological, hydrogeological, seismological, geotechnical and geophysical investigations was collected and processed for the purpose. A GIS-based (Geographic Information System) platform was initially setup to manage the gathered data, which now includes the results of about 1000 geotechnical and geophysical tests. Such an extended dataset was then used as a primary constraint for the creation of a comprehensive pseudo-3D geotechnical and seismo-stratigraphic model of the territory, consisting of a dense grid of one-dimensional vertical profiles to depict the variability of the soil properties over the area. The model was finally used as input for linear-equivalent ground response analysis. For the calculation of the amplification factors, special emphasis was given to the treatment and propagation of the uncertainties of the model parameters, whose different realizations have been accounted through a logic tree approach.296 4 - PublicationOpen AccessIntermittent Slip Along the Alto Tiberina Low‐Angle Normal Fault in Central Italy(2020)
; ; ; ; ; ; ; ; ; ; ; The Alto Tiberina normal fault (ATF) in central Italy is a 50-km-long crustal structure that dips at a low angle (15–20◦). Events on the fault plane are about 10 times less frequent than those located in its shallower syn- and antithetic hanging-wall splays. To enhance ATF catalog and achieve a better understanding of the degree of coupling in the fault system, we apply a template matching technique in the 2010–2014 time window.We augment by a factor 5 the detections and decrease the completeness magnitude to negative values. Contrary to what previously observed on ATF, we highlight intermittent seismic activity and long-lasting clusters interacting with sequences on the shallower splays. One of these episodes of prolonged seismic activity, detected at the end of 2013 on a 30-km-long ATF segment, suggest the ATF active role during an aseismic transient unraveled by geodetic data.267 15 - PublicationOpen AccessSeismicity rate changes and geodetic transients in Central Apennines(2020)
; ; ; ; ; ; ; ; ; Using template matching and GPS data, we investigate the evolution of seismicity and observable deformation in Central Apennines. Seismicity appears more persistent at the base of the seismogenic layer than in the shallower crust. Diffuse activity is reported on segments at depth, alternating along strike with apparent quiescence on segments that experienced one or more Mw6+ earthquakes in 1997, 2009 and 2016. Central Apennines are likely underlain by a sizeable shear zone with areas of diffuse seismicity bounding shallow normal faults where Mw6+ earthquakes occurred. The deformation observed at the surface seems to follow the seismicity variations at the base of seismogenic layer along the Apenninic chain. Principal and independent component analysis of GPS data exhibits a transient when the 2016 foreshock sequence starts. This transient propagated northward from the Campotosto fault up to the Alto Tiberina fault system and has likely loaded the Mw6+ 2016 earthquake sequence.57 44 - ProductOpen AccessMediterranean Sea physics Analysis and Forecast (CMEMS MED-Currents 2013-2017)(2019)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 100 144