Now showing 1 - 2 of 2
  • Publication
    Restricted
    Three-dimensional P wave attenuation and velocity upper mantle tomography of the southern Apennines–Calabrian Arc subduction zone
    (2009-06-10) ; ;
    Monna, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
    ;
    Dahm, T.; Institut für Geophysik, Universität Hamburg, Hamburg, Germany
    ;
    ;
    We propose a 3-D crust–upper mantle seismic attenuation (QP) model of the southern Apennines–Calabrian Arc subduction zone together with a 3-D velocity (VP) model. The QP model is calculated from relative t* using the spectral ratio method and the VP from traveltime data. The final data set used for the inversion of the VP model consists of 2400 traveltime arrivals recorded by 34 short-period stations that are part of the Italian National Seismic Network, and for the QP model, 2178 Pn phases recorded by a subset of 32 stations. Traveltimes and waveforms come from 272 intermediate-depth Calabrian slab events. This 3-D model of attenuation, together with the 3-D velocity model, improves our knowledge of the slab/mantle wedge structure and can be a starting point in determining the physical state of the asthenosphere (i.e., its temperature, the presence of melt and/or fluids) and its relation to volcanism found in the study area. Main features of the QP and VP models show that the mantle wedge/slab, in particular, the area of highest attenuation, is located in a volume underlying the Marsili Basin. The existence and shape of this main low-QP (and low-VP) anomaly points to slab dehydration and fluid/material flow, a process that may explain the strong geochemical affinities between the subduction-related magmas from Stromboli and Vesuvius. Other interesting features in the models are strong lateral variations in QP and VP that are put in relation with known important tectonic structures and volcanic centers in the area.
      400  44
  • Publication
    Open Access
    An improved seismicity picture of the Southern Tyrrhenian area by the use of OBS and land-based networks: the TYDE experiment
    (2006-03-20) ; ; ; ;
    Sgroi, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Braun, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Dahm, T.; Institut für Geophysik, Universität Hamburg, Hamburg, Germany
    ;
    Frugoni, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ;
    The problem of large location uncertainties for seismicity occurring in the Southern Tyrrhenian Sea have been partially exceeded during the implementation of the long-term scientific mission of the TYrrhenian Deep sea Experiment (TYDE), which allowed the installation of 14 wide-band Ocean Bottom Seismometers (OBS) and Hydrophones (OBH) in the period December 2000 – May 2001 on the sea-bottom floor around the Aeolian and Ustica Islands. Local events recorded at landstations have been observed also on the seismograms of the Ocean Bottom Seismic Network (OBSN). Moreover, some hundreds of low magnitude events, undetected from the land networks, have been recorded. We combined the readings of body wave arrival times from OBS-OBH with those from landstations to localise seismic events. We focused our study on three clusters of events representative of the seismic activity of the area: (i) “deep” events, (ii) Ustica (iii) NE-Sicily. The analysis of the integrated data set of the seismicity off-shore and on-shore, obtained from the combined land-OBS seismic network (Ustica sequence and Deep events), has improved locations in terms of RMS residuals, azimuthal gap, epicentral and hypocentral errors. Moreover, further classes of events have been analysed: the first one includes some local events that could be located only by integrating single trigger readings from the few available land-stations with the OBSN-data; the second one comprises local events that have been detected only by the OBS-OBH stations. In particular, the last cluster underlines the importance of an OBSN in the Tyrrhenian deep basin to reveal its unknown intense micro-seismicity, permitting to better understand both the tectonic and geodynamic picture of the area.
      5494  577