Options
School of Geological Sciences, University College Dublin, Dublin, Ireland
3 results
Now showing 1 - 3 of 3
- PublicationRestrictedTime reverse location of seismic long-period events recorded on Mt Etna(2011-01)
; ; ; ; ; ; ; ;O’Brien, G. S.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;Lokmer, I.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;De Barros, L.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;Bean, C. J.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;Saccorotti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Metaxian, J. P.; LGIT, Universite de Savoie, IRD, CNRS, Chambery, France ;Patanè, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; ; ; ; ; ; We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.146 21 - PublicationRestrictedSource mechanism of long-period events recorded by a high-density seismic network during the 2008 eruption on Mount Etna(2011)
; ; ; ; ; ; ; ; ;De Barros, L.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;Lokmer, I.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;Bean, C. J.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;O'Brien, G. S.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;Saccorotti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Métaxian, J.-P.; LGIT, Université de Savoie-IRD-CNRS, Chambéry, France ;Zuccarello, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia ;Patanè, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; ; ; ; ; ; ; One hundred twenty-nine long-period (LP) events, divided into two families of similar events, were recorded by the 50 stations deployed on Mount Etna in the second half of June 2008. During this period lava was flowing from a lateral fracture after a summit Strombolian eruption. In order to understand the mechanisms of these events, we perform moment tensor inversions. Inversions are initially kept unconstrained to estimate the most likely mechanism. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainties in the velocity model. Constrained inversions for a crack, a pipe or an explosion then allow us to accurately determine the structural orientations of the source mechanisms. Both numerical tests and LP event inversions emphasise the importance of using stations located as close as possible to the source. Inversions for both families show mechanisms with a strong volumetric component. These events are most likely generated by cracks striking SW–NE for both families and dipping 70° SE (family 1) and 50° NW (family 2). For family 1 events, the crack geometry is nearly orthogonal to the dikelike structure along which events are located, while for family 2 the location gave two pipelike bodies that belong to the same plane as the crack mechanism. The orientations of the cracks are consistent with local tectonics, which shows a SW–NE weakness direction. The LP events appear to be a response to the lava fountain occurring on 10 May 2008 as opposed to the flank lava flow.168 17 - PublicationRestrictedAnalysis of sustained long-period activity at Etna Volcano, Italy(2007-02-15)
; ; ; ; ; ;Saccorotti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Lokmer, I.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;Bean, C. J.; School of Geological Sciences, University College Dublin, Dublin, Ireland ;Di Grazia, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia ;Patanè, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; ; ; ; Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system.217 27