Options
CNRS-CEREGE, Department of Hydrogeophysics and Porous Media,
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessProperties of Galactic cirrus clouds observed by BOOMERanG(2010)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Veneziani, M.; Dipartimento di Fisica, Università di Roma “La Sapienza”, Rome, Italy; APC, Université Paris Diderot, 75013 Paris, France ;Ade, P. A. R.; Department of Physics and Astronomy, Cardiff University, Cardiff, UK ;Bock, J. J; Jet Propulsion Laboratory, Pasadena, CA 91109, USA; California Institute of Technology, Pasadena, CA 91125, USA ;Boscaleri, A.; IFAC-CNR, 50127, Firenze, Italy ;Crill, B. P.; Jet Propulsion Laboratory, Pasadena, CA 91109, USA; California Institute of Technology, Pasadena, CA 91125, USA ;de Bernardis, P.; Dipartimento di Fisica, Università di Roma “La Sapienza”, Rome, Italy ;De Gasperis, G.; Dipartimento di Fisica, Università di Roma “Tor Vergata”, Rome, Italy ;De Oliveira - Costa, A.; Department of Physics, MIT, Cambridge, MA 02139, USA ;De Troia, G.; Dipartimento di Fisica, Università di Roma “Tor Vergata”, Rome, Italy ;Di Stefano, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Ganga, K. M.; APC, Université Paris Diderot, 75013 Paris, France ;Jones, W. C.; Department of Physics, Princeton University, Princeton, NJ 08544 ;Kisner, T. S.; Case Western Reserve University, Cleveland, OH 44106, USA ;Lange, A. E.; Jet Propulsion Laboratory, Pasadena, CA 91109, USA ;MacTavish, C. J.; Astrophysics Group, Imperial College, London, UK ;Masi, S.; Dipartimento di Fisica, Università di Roma “La Sapienza”, Rome, Italy ;Mauskopf, P. D.; Department of Physics and Astronomy, Cardiff University, Cardiff, UK ;Montroy, T. E.; Case Western Reserve University, Cleveland, OH 44106, USA ;Natoli, P.; Dipartimento di Fisica, Università di Roma “Tor Vergata”, Rome, Italy ;Pascale, E.; Physics Department, University of Toronto, Toronto ON, Canada ;Piacentini, F.; Dipartimento di Fisica, Università di Roma “La Sapienza”, Rome, Italy ;Pietrobon, D.; Dipartimento di Fisica, Università di Roma “Tor Vergata”, Rome, Italy; Institute of Cosmology and Gravitation, U. of Portsmouth, UK ;Polenta, G.; Dipartimento di Fisica, Università di Roma “La Sapienza”, Rome, Italy; ASI Science Data Center, c/o ESRIN, 00044 Frascati, Italy; INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone, Italy ;Ricciardi, S.; Computational Research Division, LBNL, Berkeley, CA 94720, USA; Dipartimento di Fisica, Università di Roma “La Sapienza”, Rome, Italy ;Romeo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Ruhl, J. E.; Case Western Reserve University, Cleveland, OH 44106, USA ;Netterfield, C. B.; Physics Department, University of Toronto, Toronto ON, Canada; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The physical properties of galactic cirrus emission are not well characterized. BOOMERANG is a balloonborne experiment designed to study the cosmic microwave background at high angular resolution in the millimeter range. The BOOMERANG 245 and 345 GHz channels are sensitive to interstellar signals, in a spectral range intermediate between FIR and microwave frequencies. We look for physical characteristics of cirrus structures in a region at high galactic latitudes (b -40 ) where BOOMERANG performed its deepest integration, combining the BOOMERANG data with other available datasets at different wavelengths. We have detected 8 emission patches in the 345 GHz map, consistent with cirrus dust in the Infrared Astronomical Satellite maps. The analysis technique we have developed allows to identify the location and the shape of cirrus clouds, and to extract the flux from observationswith different instruments at differentwavelengths and angular resolutions. We study the integrated flux emitted from these cirrus clouds using data from Infrared Astronomical Satellite (IRAS), DIRBE, BOOMERANG and Wilkinson Microwave Anisotropy Probe in the frequency range 23–3000 GHz (13 mm 100 μm wavelength). We fit the measured spectral energy distributions with a combination of a grey body and a power-law spectra considering two models for the thermal emission. The temperature of the thermal dust component varies in the 7 – 20 K range and its emissivity spectral index is in the 1 – 5 range. We identified a physical relation between temperature and spectral index as had been proposed in previous works. This technique can be proficiently used for the forthcoming Planck and Herschel missions data.535 108 - PublicationRestrictedGeophysical investigations at Stromboli volcano, Italy: implications for ground water flow and paroxysmal activity(2004)
; ; ; ; ;Revil, A.; CNRS-CEREGE, Department of Hydrogeophysics and Porous Media, ;Finizola, A.; Laboratoire Magmas et Volcans, Universit´e Blaise Pascal, OPGC, ;Sortino, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia ;Ripepe, M.; Università di Firenze, Dipartimento di Scienze della Terra, via G. La Pira, 4, I-50121, Firenze, Italy.; ; ; Stromboli volcano (Italy) is characterized by a permanent mild explosive activity disrupted by major and paroxysmal eruptions. These strong eruptions could be triggered by phreatomagmatic processes. With the aim of obtaining a better understanding of ground water flow in the vicinity of the active vents, we carried out a set of geophysical measurements along two profiles crossing the Fossa area (through the Pizzo, the Large and the Small Fossa craters). These measurements include electrical resistivity, induced polarization, self-potential, temperature and CO2 ground concentration. These methods are used in order to delineate the crater boundaries, which act as preferential fluid flow pathways for the upflow of hydrothermal fluids. The absence of fumarolic activity in the Fossa area and the ground temperature close to 100 °C at a depth of 30 cm indicate that the hydrothermal fluids condense close to the ground surface. Part of this condensed water forms a shallow drainage network (<20 m) in which groundwater flows downslope toward a perched aquifer. The piezometric surface of this aquifer is located ∼20 m below the topographic low of the Small Fossa crater and is close (<100 m) to the active vents. Electrical resistivity tomography, temperature and CO2 measurements show that this shallow aquifer separates the underlying hydrothermal body from the ground surface. Further studies are needed to ascertain the size of this aquifer and to check its possible implications for the major and paroxysmal events observed at the Stromboli volcano.319 111