Options
02.01. Permafrost
Parent Classification
9 results
Now showing 1 - 9 of 9
- PublicationOpen AccessSu particolari forme della superficie di Marte che evidenziano la presenza di acqua liquida sul pianeta(2000)
; Lo spunto iniziale deriva dall’intuizione che il problema dell’esistenza di acqua liquida nell’ambiente marziano non dipende dalla temperatura ma dalla pressione. Si è dunque costruito un modello matematico basato su gradienti di temperatura e di pressione e quindi un programma in grado di simulare le condizioni ambientali in qualsiasi punto della superficie del pianeta, dati latitudine, longitudine e quota. Il confronto tra queste condizioni e il diagramma di stato dell’acqua (sempre calcolato dal programma e anch’esso adattato all’ambiente marziano) fornisce un verdetto sulla sussistenza delle condizioni favorevoli alla presenza di acqua allo stato liquido. Invertendo il processo di calcolo, il programma fornisce anche indicazioni geografiche sulla fascia climatica ideale. In base alle indicazioni di questo modello e attraverso alcune chiavi di interpretazione geomorfologica definite appositamente per questo ambiente, è stata effettuata con successo una ricerca mirata tra le immagini ad alta risoluzione fornite dalla missione Mars Global Surveyor. Si è potuto così individuare nelle zone “positive” alcune caratteristiche che sono comuni a tutte le foto di “ruscellamenti” di recente scoperta, nonché i ruscellamenti stessi. Si è potuto inoltre fornire un’interpretazione geologica di tutte le varianti di questo fenomeno basandosi unicamente sul modello fornito dal programma. Poiché i dati di input del modello erano riferiti alle condizioni ambientali attuali, si deduce che tali fenomeni siano potenzialmente ancora in atto. Sulla base di evidenze morfologiche antiche e recenti, si è inoltre ricostruita un’evoluzione del ciclo dell’acqua nel corso della storia geologica del pianeta. Si ritiene che tale ciclo si sia ormai arrestato, sebbene possa essere ancora possibile trovare acqua liquida in determinate condizioni.28 36 - PublicationRestrictedProcess studies on the ecological coupling between sea ice algae and phytoplankton(2012)
; ; ; ;Tedesco, L.; Marine Research Centre, Finnish Environment Institute ;Vichi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia ;Thomas, D.; Marine Research Centre, Finnish Environment Institute; ; The seasonal dynamics of pelagic and sea ice communities are closely related in ice-covered waters, however, modelling works that analyse such interactions are scarce. We use the Biogeochemical Flux Model in Sea Ice (BFM-SI) coupled to the pelagic Biogeochemical Flux Model (BFM) in a study area in Greenland to quantitatively investigate: (1) the significance of photoacclimation/photoadaptation strategies of autotrophs, (2) the fate of the sea ice biomass in case of algae seeding, algae aggregation and at different mixed layer depths and (3) the changes in community production under a climate change scenario. The results show that sea ice algae need to be both photoacclimated and photoadapted to the sea ice environment in order to grow, while phytoplankton may adopt different strategies for optimising their growth. The seeding of the phytoplankton bloom shows to be driven, both in timing and magnitude, by the viability of sea ice algae and by the degree of aggregation of algae released from the ice, which also affects the sinking rate to the sea floor. Under a mild climate change scenario (SRES B2, 2071–2090) the sea ice community is projected to be generally more productive, whereas phytoplankton growth will be reduced because the melt of sea ice will occur earlier in the season when light is less favourable to sustain the growth. While it is generally anticipated that the melting of multi-year ice in the Arctic Ocean will cause an increase in marine production, this study shows that seasonal ice-covered seas in the Northern hemisphere may actually be less productive and may shift to more oligotrophic conditions within the next 100 years.477 113 - PublicationOpen AccessANNALS OF GEOPHYSICS: AD MAJORA(2014)
; ; ; ; ; ; ; ; ; ;Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Bianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia ;De Michelis, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia ;Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Caprara, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia ;Chiodetti, A. G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia ;Del Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia ;Gresta, S.; Univ Catania; ; ; ; ; ; ; ; Annals of Geophysics (ISSN: 1593-5213; from 2010, 2037-416X) is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica (ISSN: 0365-2556), which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, Earth magnetism, and atmospheric studies....1542 263 - PublicationOpen AccessRadar systems for Glaciology(2010-01)
; ; ; ; ;Zirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Cafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Baskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; ; ; ; ; Kouemou, G.This chapter deals with radar systems, measurements and instrumentation employed to study the internal core and bedrock of ice sheets in glaciology. The Earth's ice sheets are in Greenland and Antarctica. They cover about 10% of the land surface of the planet. The total accumulated ice comprises 90% of the global fresh water reserve. These ice sheets, associated with the ocean environment, provide a major heat sink which significantly modulates climate. Glaciology studies aim to understand the various process involved in the flow (dynamics), thermodynamics, and long-term behaviour of ice sheets. Studies of large ice masses are conducted in adverse environmental conditions (extreme cold, long periods of darkness). The development of remote sensing techniques have played an important role in obtaining useful results. The most widely used techniques are radar systems, employed since the 1950s in response to a need to provide a rapid and accurate method of measuring ice thickness. Year by year, polar research has become increasingly important because of global warming. Moreover, the discovery of numerous subglacial lake areas (water entrapped beneath the ice sheets) has attracted scientific interest in the possible existence of water circulation between lakes or beneath the ice (Kapitsa et al., 2006; Wingham et al., 2006; Bell et al., 2007). Recent studies in radar signal shape and amplitude could provide evidence of water circulation below the ice (Carter 2007, Oswald and Gogineni 2008). In this chapter the radar systems employed in glaciology, radio echo sounding (RES), are briefly described with some interesting results. RES are active remote sensing systems that utilize electromagnetic waves that penetrate the ice. They are used to obtain information about the electromagnetic properties of different interfaces (for example rock-ice, ice-water, seawater-ice) that reflect the incoming signal back to the radar. RES systems are characterized by a high energy (peak power from 10 W to 10 KW) variable transmitted pulse width (about from 0.5 ns to several microseconds) in order to investigate bedrock characteristics even in the thickest zones of the ice sheets (4755 m is the deepest ice thickness measured in Antarctica using a RES system). Changing the pulse length or the transmitted signal frequencies it is possible to investigate particular ice sheet details with different resolution. Long pulses allows transmission of higher power than short pulses, penetrating the thickest parts of the ice sheets but, as a consequence, resolution decreases. For example, the GPR system, commonly used in geophysics for rock, soil, ice, fresh water, pavement and structure characterization, employs a very short transmitted pulse (0.5 ns to 10 ns) that allow detailing of the shallow parts of an ice sheet (100-200 m in depth) (Reynolds 1997). Consequently, in recent years, GPR systems are also employed by explorers to find hidden crevasses on glaciers for safety. RES surveys have been widely employed in Antarctic ice sheet exploration and they are still an indispensable tool for mapping bedrock morphologies and properties of the last unexplored continent on Earth. The advantage of using these remote sensing techniques is that they allow large areas to be covered, in good detail and in short times using platforms like aeroplanes and surface vehicles.14469 879 - PublicationRestrictedA dynamic Biologically-Active Layer for numerical studies of the sea ice ecosystem.(2010)
; ; ; ; ;Tedesco, L.; CMCC ;Vichi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia ;Haapala, J.; FMI ;Stipa, T.; FMI; ; ; This work introduces a novel approach for the modelling and coupling of sea ice biology to sea ice physics. The central concept of the coupling is the definition of the Biologically Active Layer, which is the time-varying fraction of sea ice that is connected to the ocean via brine pockets and channels, and acts as a rich habitat for many microorganisms. A simple but comprehensive physical model of the sea ice thermohalodynamics is coupled to a novel sea ice microalgal model of growth in the framework of the Biogeochemical Flux Model. The physical model provides the key physical properties of the Biologically Active Layer and the biological model simulates the physiological and ecological response of the algal community to the physical environment. Numerical simulations of chl-a were compared with observations at two different ice stations, in the Baltic and off the coast of Greenland, showing that this new coupling structure is sufficiently generic to represent well the temporal and spatial distribution of sea ice algae during the whole ice season at both sites. This model implementation and coupling structure is viable as a new component of General Circulation Models, allowing for estimates of the role and importance of sea ice biology in the local and global carbon cycle.482 108 - PublicationOpen AccessLate Cenozoic climate history of the Ross Embayment from the AND -1B drill hole: Culmination of three decades of Antarctic margin drilling(2007-08-26)
; ; ; ; ; ; ; ; ; ; ; ; ; ;the ANDRILL-MIS Science team ;Naish, T. R.; Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand - Geological and Nuclear Sciences, Lower Hutt, New Zealand ;Powell, R. D.; Department of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL, USA ;Barrett, P. J.; Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand ;Levy, R. H.; ANDRILL Science Management Office, University of Nebraska-Lincoln, Lincoln, United States ;Henrys, S.; Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand ;Wilson, G. S.; Department of Geology, University of Otago, Dunedin,New Zealand ;Krissek, L. A.; Department of Geosciences, The Ohio State University, Columbus, OH, USA ;Niessen, F.; Department of Marine Geophysics, Alfred Wegener Institute, Bremerhaven, Germany ;Pompilio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Ross, J.; New Mexico Geochronology Research Laboratory, Socorro ;Scherer, R.; Department of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL, USA ;Talarico, F.; Università di Siena, Dipartimento di Scienze delle Terra, Siena, Italy ;Pyne, A.; Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand ;the ANDRILL-MIS Science team; http://www.andrill.org/support/references/appendixc.html; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Cooper, A. K. ;Raymond, C. R.ISAES Editorial TeamBecause of the paucity of exposed rock the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from off-shore shelf basins through seismic surveys and drilling. The number of holes has been small and largely confined to three areas (McMurdo Sound, Prydz Bay and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well-cored, the Late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285m-long record of climate history spanning the last 13 m.y. from sub-sea floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice sheet and climate fluctuations for this period of Earth’s history. The >60 cycles of advance and retreat of the grounded ice margin preserved in the AND¬1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep sea oxygen isotope records ~14 m.y. ago. A feature of particular interest is a ~90m-thick interval of diatomite deposited during the warm Pliocene, and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity and retreat of the glaciers on land.443 302 - PublicationRestrictedA CO2-rich magma source beneath the Phlegraean Volcanic District (Southern Italy):(2011-06-13)
; ; ; ; ; ; ; ; ;Mormone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia ;Piochi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia ;Bellatreccia, F.; Dipartimento di Scienze Geologiche, Università Roma Tre, Roma, Italy ;De Astis, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Moretti, R.; Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM) & Dipartimento di Ingegneria Civile, Seconda Università degli Studi di Napoli, Aversa (CE), Italy ;Della Ventura, G.; Dipartimento di Scienze Geologiche, Università Roma Tre, Roma, Italy ;Cavallo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Mangiacapra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; ; ; ; ; ; ; We present a study of olivine-hosted glass/melt inclusions (MIs) in the most primitive rocks erupted at Procida Island, within the Phlegraean Volcanic District (PVD), Southern Italy. MIs were analyzed by combined Scanning Electron Microscopy coupled with Energy Dispersive X-ray-detectors, Wavelength Dispersive X-rayequipped Electron Microprobe and Fourier Transform Infrared (FT-IR) Spectroscopy; notably, the novel Focal- Plane-Array mode provided high-resolution FT-IR images evidencing the distribution of the C–H–O species across samples. Olivines range in composition from Fo85 to Fo90, do not show chemical zoning and are totally anhydrous. The majority of the MIs are glassy, while only few are completely crystallized. Some MIs, however, show the occurrence of crystal nuclei, i.e., nano- to micro-sized pyroxenes and oxides, and appear as lowcrystallized MIs. The glass of crystal-free and low-crystallized MIs shows K-affinity and a compositional range along the basalt, trachy-basalt, shoshonite, tephrite basanite and phono-tephrite array. H2O and CO2 contents up to 2.69 wt.% and 2653 ppm, respectively, define a major degassing trend with small isobaric deviations. The collected data allow recalculating entrapment pressures from ~350 MPa to b50 MPa and suggest that the magma ascent was dominated by degassing. Crystallization was aminor process, likely also consequent to local CO2-fluxing. Mingling occurred between variable degassed and crystallized magma portions during decompression. The geochemical and isotopic data of Procida glasses and rocks, and the compositional relationship between our MIs and those from slightly more evolved and radiogenic Phlegraean products, indicate that Procida basalts are an adequate parental end-member for the PVD. Our data suggest that a CO2- rich magma source was stored at depths of at least 13–14 km (i.e., 350 MPa) beneath the PVD. Fast ascent of magma batches directly started from this depth shortly before PVD trachy-basaltic to shoshonitic eruptions. Such results have implication on volcanic hazard assessment in the PVD area.923 113 - PublicationRestrictedAntarctic permafrost degassing in Taylor Valley by extensive soil gas investigation(2023-03-25)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Ongoing studies conducted in northern polar regions reveal that permafrost stability plays a key role in the modern carbon cycle as it potentially stores considerable quantities of greenhouse gases. Rapid and recent warming of the Arctic permafrost is resulting in significant greenhouse gas emissions, both from physical and microbial processes. The potential impact of greenhouse gas release from the Antarctic region has not, to date, been investigated. In Antarctica, the McMurdo Dry Valleys comprise 10 % of the ice-free soil surface areas in Antarctica and like the northern polar regions are also warming albeit at a slower rate. The work presented herein examines a comprehensive sample suite of soil gas (e.g., CO2, CH4 and He) concentrations and CO2 flux measurements conducted in Taylor Valley during austral summer 2019/2020. Analytical results reveal the presence of significant concentrations of CO2, CH4 and He (up to 3.44 vol%, 18,447 ppmv and 6.49 ppmv, respectively) at the base of the active layer. When compared with the few previously obtained measurements, we observe increased CO2 flux rates (estimated CO2 emissions in the study area of 21.6 km2 ≈ 15 tons day-1). We suggest that the gas source is connected with the deep brines migrating from inland (potentially from beneath the Antarctic Ice Sheet) towards the coast beneath the permafrost layer. These data provide a baseline for future investigations aimed at monitoring the changing rate of greenhouse gas emissions from Antarctic permafrost, and the potential origin of gases, as the southern polar region warms.198 2 - PublicationOpen AccessMonitoraggio sismico del territorio nazionale: stato dell'arte e sviluppo delle reti di monitoraggio sismico(2011)
; ;Sergio, Guardato; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, ItaliaIl sistema CUMAS (Cabled Underwater Module for Acquisition of Seismological data) è un prodotto tecnologico-scientifico complesso nato con il Progetto V4 [Iannaccone et al., 2008] allo scopo di monitorare l’area vulcanica dei Campi Flegrei (fenomeno del bradisismo). Si tratta di un modulo sottomarino cablato e connesso a una boa galleggiante (meda elastica). Il sistema è in grado di acquisire e trasmettere alla sala di monitoraggio dell’OV, in continuo e in tempo reale, sia i segnali sismologici sia quelli di interesse geofisico ed oceanografico (maree, correnti marine, segnali acustici subacquei, parametri funzionali di varia natura). Il sistema è in grado di ricevere comandi da remoto per variare diversi parametri di acquisizione e di monitorare un cospicuo numero di variabili di funzionamento. Il sistema si avvale del supporto di una boa galleggiante attrezzata. La boa è installata a largo del golfo di Pozzuoli (Napoli) a circa 3 km dalla costa. Il modulo sottomarino, collegato via cavo alla parte fuori acqua della boa, è installato sul fondale marino a una profondità di circa 100 metri.763 767