Now showing 1 - 2 of 2
  • Publication
    Restricted
    From cylindrical to non‐cylindrical foreland basin: Pliocene–Pleistocene evolution of the Po Plain–Northern Adriatic basin (Italy)
    The architecture of foreland basins and the resulting distribution of clastic sediments are related to the constant interplay between tectonics and sedimentation. Specifically, basin floor modifications strongly influence dimensions, continuity and connections of sand‐size and fine‐grained deposits. Given the increasing need to identify deep potential reservoir deposits, the large‐scale definition of clastic porous targets and their seals is a matter of interest for oil and gas industry. Here, we present the reconstruction of the Po Plain and Northern Adriatic Foreland Basin (with an extent of ca. 40,000 km2) and its Pliocene–Pleistocene evolution, as an example of a sedimentary clastic system controlled by strongly non‐cylindrical foreland geometry. The study is based on the basin‐scale mapping of six unconformity‐bounded sequences, performed by interpreting a dense network of seismic lines and correlating well‐log data. This provides a three‐dimensional model of the step‐by‐step evolution of the basin and a description of the sediment dispersal pattern. We found that the basin records the change from a continuous (cylindrical) to highly fragmented (non‐cylindrical) foredeep geometry during Late Pliocene. In the Northern Apennines case, the main factors driving the development of a non‐cylindrical geometry are mainly related to inherited inhomogeneity in the downgoing block linked to its Mesozoic extensional faulting, and the relative orientation of these lineaments with respect to the direction of orogen migration. During the late Pliocene–Pleistocene the two directions progressively became close to parallel, and the Northern Apennines system reacted changing from a cylindrical to a non‐cylindrical state.
      219  4
  • Publication
    Restricted
    Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions
    Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. Such a rock uplift rate pattern is at odds with the horizontal velocity eld, characterized by shortening and crustal thickening in the Eastern Alps and very limited deformation in the Central and Western Alps. Proposed me- chanisms of rock uplift rate include isostatic response to the last deglaciation, long-term erosion, detachment of the Western Alpine slab, as well as lithospheric and surface de ection due to mantle convection. Here, we assess previous work and present new estimates of the contributions from these mechanisms. Given the large range of model estimates, the isostatic adjustment to deglaciation and erosion are su cient to explain the full observed rate of uplift in the Eastern Alps, which, if correct, would preclude a contribution from horizontal shortening and crustal thickening. Alternatively, uplift is a partitioned response to a range of mechanisms. In the Central and Western Alps, the lithospheric adjustment to deglaciation and erosion likely accounts for roughly half of the rock uplift rate, which points to a noticeable contribution by mantle-related processes such as detachment of the European slab and/or asthenospheric upwelling. While it is di cult to independently constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at present, future data should provide additional insights. Regardless, interacting tectonic and surface mass redistribution processes, rather than an individual forcing, best explain ongoing Alpine elevation changes.
      163  4