Now showing 1 - 8 of 8
  • Publication
    Open Access
    Naturally Occurring Asbestos (NOA) in Granitoid Rocks, A Case Study from Sardinia (Italy)
    All six minerals defined as “asbestos” by the existing regulation on asbestos hazard, i.e., actinolite, tremolite, anthophyllite, crocidolite and amosite amphiboles, and the serpentine-group mineral chrysotile are typical constituents of mafic and ultramafic magmatic rocks of ophiolitic sequences. However, little is known about the presence and distribution of naturally occurring asbestos (NOA) in plutonic felsic rocks. The Isadalu magmatic complex outcropping in central Sardinia and belonging to the post-variscan Permian volcanic cycle, is described here as an interesting occurrence of fibrous amphiboles in granitoid rocks. Field work and collected mineralogical/petrological data show that NOA fibers from the Isadalu complex belong compositionally to the actinolite-tremolite series. They were generated by metasomatic growth on pristine magmatic hornblende, at ca. 470 °C at 1 kbar, during sodic-calcic hydrothermal alteration. In terms of environmental hazard, the Isadalu complex represents a high-value case study, since the actinolite-bearing felsic rocks outcrop in a strongly anthropized area. Here, towns with local and regional strategic infrastructures (dams, pipes, hydroelectric power plants, water supply, roads) have been developed since the last century, also using the granitoid asbestos-rich stones. The aim of this study is to demonstrate that NOA and relative hazard are not univocally connected to a restricted typology of rocks. This result should be taken into account in any future work, procedure or regulation defining asbestos occurrences in natural environments
      69  119
  • Publication
    Open Access
    The Taverna San Felice Dike (NE of Roccamonfina Volcano): Unraveling Magmatic Intrusion Processes and Volcano‐Tectonics in the Tyrrhenian Margin of the Southern Apennines
    The Roccamonfina volcano is located within the Garigliano Graben (southern Apennines, Italy) and has been active throughout the Middle-Late Pleistocene. Along its polyphase volcanic history (630–55 ka), including several caldera-forming eruptions (385–230 ka), several effusive/mildly explosive monogenetic events occurred along the volcano slopes, within the summit caldera, and along the graben-bounding carbonate reliefs. In this paper, we present a multidisciplinary study of a mafic magmatic feeder dike intruded within the Meso-Tertiary carbonates and overlying Lower Pleistocene breccias of Mt Cesima, northeast of the Roccamonfina volcano. We performed a stratigraphic and structural survey of the area and petrographic analyses on several samples of the dike. Results indicate that a ∼1 km long fissure fed an eruption that also emplaced a Strombolian pyroclastic sequence. Petrological data show that an open-system mafic recharge fueled the tephritic magma that fed the eruption, whereas no evidence of significant pre/syn-eruptive assimilation of carbonate has been identified. Stratigraphic and petrological data do not allow to firmly constrain the timing of the eruption, which could belong both to the pre-Brown Leucitic Tuff (>354 ka) and to the post-White Trachytic Tuffs (<230 ka) epochs of activity of the Roccamonfina volcano. Structural data show that the dike is broadly oriented E-W and changes direction toward NE-SW in correspondence with a pre-existing fault damage zone. We suggest that magma was intruded during an N-S trending extensional event in the Middle Pleistocene, whose prolonged activity resulted in regional uplift and exhumation of regional significance.
      30  14
  • Publication
    Open Access
    RECONSTRUCTION OF POROSITY PROFILE OF AN OFF-SHORE DEEP WELL AND INPUT DATA FOR THE GEOCHEMICAL MODELING OF CO2 STORAGE IN A CARBONATE SALINE AQUIFER, IN ITALY.
    (2009-03-16) ; ; ; ; ; ; ;
    Montegrossi, G.; CNR-IGG Firenze
    ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Buttinelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Lucci, F.; Roma Tre University
    ;
    Quattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Tassi, F.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Vaselli, O.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    ; ; ; ; ; ;
    CO2 Capture & Storage (CCS) is presently one of the most promising technologies for reducing anthropogenic emissions of CO2. The numerical modeling procedures of geochemical processes are one of the few approaches for investigating the short-long-term consequences of CO2 storage into a deep reservoir. We present the results of a new approach for the reconstruction of thermo-physical properties of an off-shore deep well (situated in the medium Tyrrhenian Sea, only 5 miles from the coast, in the frame of a distensive and relatively high heat flux regime as a whole,with good outcrops, on-shore, of its stratigraphy includes six Late Triassic-Early Jurassic carbonatic formations at the depth of 2500-3700 m b.s.l). We used the well-log coupled with temperature profile and new mineralogical analyses of the outcrops geological formations, being the original core data lacking. This kind of procedure is new as a whole, and it is useful to create background petro-physical data, for reservoir engineering numerical simulations both of mass-transport and geochemical as well as geo-mechanical, in order to asses its general properties, without re-opening the well itself for industrial use, such as CO2 geological storage. The profile of thermal capacity and conductivity, as well as porosity and permeability resulted very well constrained and detailed for further numerical simulation uses. Porosity is a very important parameter for reservoir engineering, mainly for numerical simulations including geochemical modelling, being strongly necessary for CO2 geological storage feasibility studies, because it allows to compute: i) the reservoir storage capacity for each trapping mechanisms (some algorithms are discussed in the presentation) and ii) the water/rock ratio (one of the input parameter requested by the geochemical software codes). A common problem, working with closed wells with, available the well-log report only, is to obtain data on the thermo-physical properties of the rock. Usually the available well-log report the temperature profile measured during drilling, the mud-loss and some other information on water and gas phase presence. In this work we present a procedure that allow to estimate porosity and permeability of the rock formation from the well-log data joint with a rough mineralogical analyses of the corresponding geological formations outcrop with the use of a boundary condition such as shallow heat flow measurements; a similar approach were presented from some authors that dealt with similar problems e.g. Singh V.K., (2007). The analyses of the rock samples proceed by using i) petro-graphical analyses; ii) calcimetry with Dietrich-Fruhling apparatus in order to analyse the carbonate content of each sample; iii) XRD Rietveld analyses in order to quantify the major mineralogy of each sample and to apply the dolomite correction to the results of calcimetry determination. Rietveld quantification procedure were performed by using Maud v 2.2.; iv) SEM analyses have been accomplished later in details. Successively, hints about the subsequent geochemical modelling approach are presented. Chemical composition of the aquifer pore water has been has been inferred by batch modeling assuming thermodynamic equilibrium between minerals and a NaCl equivalent brine at reservoir conditions (up to 70 °C and 200 bar). Numerical simulations has been carried out by the PRHEEQC (V2.11) Software Package via corrections to the code default thermodynamic to obtain a more realistic modeling.
      176  167
  • Publication
    Open Access
    Reconstruction of rocks petrophysical properties as input data for reservoir modeling
    The worldwide increasing energy demand triggered studies focused on defining the underground energy potential even in areas previously discharged or neglected. Nowadays, geological gas storage (CO2 and/or CH4) and geothermal energy are considered strategic for low-carbon energy development. A widespread and safe application of these technologies needs an accurate characterization of the underground, in terms of geology, hydrogeology, geochemistry and geomechanics. However, during pre-feasibility study-stage, the limited number of available direct measurements of reservoirs, and the high costs of reopening closed deep wells must be taken into account. The aim of this work is try to overcome these limits, proposing a new methodology to reconstruct vertical profiles, from surface to reservoir base, of: i) thermal capacity, ii) thermal conductivity, iii) porosity and iv) permeability, through integration of well-log information, petrographic observations on inland outcropping samples and, flow and heat transport modelling. As case study to test our procedure we selected a deep-structure, located in the medium Tyrrhenian Sea (Italy). Obtained results are consistent with measured data, confirming the validity of the proposed model. Notwithstanding intrinsic limitations due to manual calibration of the model with measured data, this methodology represents a useful tool for reservoir and geochemical modellers that need to define petrophysical input data for underground modelling before the well reopening.
      158  72
  • Publication
    Open Access
    CO2 reactive transport simulations in an Italian deep saline aquifer
    (2009-09) ; ; ; ; ; ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Montegrossi, G.; CNR-IGG Firenze
    ;
    Lucci, F.; Roma Tre University
    ;
    Buttinelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Vaselli, O.; Deprtment of earth science
    ;
    Quattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ; ;
    In this study numerical simulations of reactive transport in an off-shore deep saline aquifer for the geological sequestration of carbon dioxide are presented and discussed. The main goals are to assess: i) the CO2 injection impact in the reservoir and ii) the cap-rock stability, both being strategic requisites for feasibility studies that are about to be started in Italy. The stratigraphic succession is characterized by a sedimentary succession: from Triassic anhydrites to Jurassic Tuscan calcareous units, up to Cretaceous calcarenites, belonging to the Liguride units, and Quaternary shallow marine sediments. Stratigraphic data from a deep well indicate that below an 1,800 m thick cap-rock, constituted by allochtonous marly calcarenites and clay marls, a regional deep saline aquifer is present. This aquifer, hosted in six Late Triassic to Early Jurassic formations, belonging to the Tuscan Nappe units, consists of porous limestone (mainly calcite) and marly limestone deposits at 1900-3100 m b.s.l. A common problem working with off-shore closed wells, where only the well-log information are available, is that to obtain reliable physico-chemical parameters (e.g. petrophysical and mineralogical) to be used for numerical simulations. Available site-specific data include only basic physical parameters such as temperature, pressure, and salinity of the formation waters. Bulk and modal mineralogical composition were obtained after sampling each formation in contiguous on-shore zones. Mineralogy was determined by X-Ray diffraction analysis coupled with Rietfield refinement. The latter was performed using Maud v2.2. The surface reactive area of minerals was assumed as geometric area of a truncated sphere calculated on the basis of Scanning Electronic Microscopy analysis. Porosity and permeability were inferred by the well-log data along with the use of boundary conditions such as surficial measurements and temperature profiles. The chemical composition of the aquifer pore water is unknown. As a consequence, this was calculated by batch modeling, assuming thermodynamic equilibrium between minerals and a NaCl (0.45 M) equivalent brine at reservoir conditions (up to 118 °C and 300 bars). The reconstructed dataset represented the base of numerical simulations to evaluate the potential geochemical impact of CO2 storage and to quantify water-gas-rock reactions. Three dimensional simulations were performed by the TOUGHREACT code via the implementation to the source code and the correction of the chemical parameters at the theoretical CO2 injection pressure. A re-interpretation of the available seismic reflection data was carried out to: i) define the 3D geometry, and ii) evaluate the volume of the geological structure potentially suitable for CO2 storage. In particular the main surfaces where physicochemical modeling was applied, i.e. the top and the bottom of the cap-rock units and the spill point surface, to better define the 3D geometry of the potential injection reservoir, were reconstructed. Reactive transport simulations were conducted under multiphase advection, aqueous diffusion, gas phase participation in multiphase fluid flow and geochemical reaction in non-isothermal conditions. Feedbacks between flow and geochemical processes were taken into account to evaluate changes in porosity and permeability as kinetic reactions were proceeding. Twenty years of CO2 injection at the rate of 1.5 Mt/year were simulated, whereas water-gas-rock interactions between CO2-rich brines and minerals over a period of 100 years were performed. Preliminary results suggest that injected CO2 can safely be retained in the reservoir by mineral trapping and that the cap-rock can be considered as efficient barrier.
      274  118
  • Publication
    Open Access
    Overview of the geochemical modeling on CO2 capture & storage in Italian feasibility studies
    (2009-06) ; ; ; ; ; ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Montegrossi, G.; CNR-IGG Firenze
    ;
    Buttinelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Lucci, F.; Roma Tre University
    ;
    Vaselli, O.; Deprtment of earth science
    ;
    Quattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ; ;
    CO2 Capture & Storage in saline aquifers is presently one of the most promising technologies for reducing anthropogenic emissions of CO2. In these sites the short-longterm consequences of CO2 storage into a deep reservoir can be predicted by numerical modelling of geochemical processes. Unfortunately a common problem working with off-shore closed wells, where only the well-log information are available, is to obtain physico-chemical data (e.g. petrophysical and mineralogical) needed to reliable numerical simulations. Available site-specific data generally include only basic physical parameters such as temperature, pressure, and salinity of the formation waters. In this study we present a methodological procedure that allows to estimate and integrate lacking information to geochemical modelling of deep reservoirs such as: i) bulk and modal mineralogical composition, ii) porosity and permeability of the rock obtained from heat flow measurements and temperature, iii) chemical composition of formation waters (at reservoir conditions) prior of CO2 injection starting from sampling of analogue outcropping rock formations. The data sets in this way reconstructed constitute the base of geochemical simulations applied on some deep-seated Italian carbonatic and sandy saline aquifers potentially suitable for geological CO2 storage. Numerical simulations of reactive transport has been performed by using the reactive transport code TOUGHREACT via pressure corrections to the default thermodynamic database to obtain a more realistic modelling. Preliminary results of geochemical trapping (solubility and mineral trapping) potentiality and cap-rock stability as strategic need for some feasibility studies near to be started in Italy are here presented and discussed.
      172  122
  • Publication
    Open Access
    Hydrothermal genesis and growth of the banded agates from the Allumiere-Tolfa volcanic district (Latium, Italy)
    In this work, we studied the hydrothermal agates from the Neogene–Quaternary volcanic district of Allumiere-Tolfa, northwest of Rome (Latium, Italy) using a combination of micro-textural, spectroscopic, and geochemical data. The examined sample consists of (1) an outer cristobalite layer deposited during the early stages of growth, (2) a sequence of chalcedonic bands (including i.e., length-fast, zebraic, and minor length-slow chalcedony) with variable moganite content (up to ca. 48 wt%), (3) an inner layer of terminated hyaline quartz crystals. The textures of the various SiO2 phases and their trace element content (Al, Li, B, Ti, Ga, Ge, As), as well as the presence of mineral inclusions (i.e., Fe-oxides and sulfates), is the result of physicochemical fuctuations of SiO2-bearing fuids. Positive correlation between Al and Li, low Al/Li ratio, and low Ti in hyaline quartz points to low-temperature hydrothermal environment. Local enrichment of B and As in chalcedony-rich layers are attributed to pH fuctuations. Analysis of the FT-IR spectra in the principal OH-stretching region (2750–3750 cm−1) shows that the silanol and molecular water signals are directly proportional. Strikingly, combined Raman and FT-IR spectroscopy on the chalcedonic bands reveals an anticorrelation between the moganite content and total water (SiOH+ molH2O) signal. The moganite content is compatible with magmatic-hydrothermal sulfate/alkaline fuids at a temperature of 100–200 °C, whereas the boron-rich chalcedony can be favored by neutral/acidic conditions. The fnal Bambauer quartz growth lamellae testifes diluted SiO 2-bearing solutions at lower temperature. These fndings suggest a genetic scenario dominated by pH fuctuations in the circulating hydrothermal fuid
      45  8
  • Publication
    Restricted
    Magmatic Mn-rich garnets in volcanic settings: Age and longevity of the magmatic plumbing system of the Miocene Ramadas volcanism (NW Argentina)
    The Miocene “Corte Blanco Tuff” rhyolite deposit is the product of a large volume and high intensity Plinian erup-tion from the solitary and monogenetic Ramadas Volcanic Centre (Central Andes, Province of Salta, NWArgentina). The“Corte Blanco Tuff”consists of vitreous tube pumices with rare euhedral sub-millimetricMn-garnet phenocrysts, typically hosting inclusions of U-phases as zircon and monazite. Here, we present newtextural, major and trace elemental analyses of garnet, zircon and glass that, combined with in situ U-(Th)-Pbzircon and monazitedating, are used to reconstruct thethermobaricenvironment offormation,age andlongevityof the magmatic plumbing system of the Ramadas magma. The results indicate to a crystallization path of aperaluminous rhyolitic melt at shallow crustal levels (≤6 km), as sequentially tracked by the initial nucleationof zircon (780 °C at 9.16 Ma) and garnet (above or at ca. 700 °C), to thefinal monazite growth (660–670 °C, at8.70 Ma) in a water-saturated (H2O=3–5 wt%) environment, shortly before the eruption started. These data(1) define for thefirst time the primary magmatic origin of Mn-garnet in a rhyolitic volcanic setting; (2) providenew partition coefficients of rare earth elements (REE) between natural garnet, zircon and rhyolitic melts; and(3) permit reconstruction of the magmatic processes that resulted in the Ramadas eruption. On a wider scale,our results document the spatio-temporal (P-Tconditions, timing and longevity) time scales involved in the pet-rogenesis of a shallow peraluminous water-saturated rhyolitic magmatic plumbing system that is able to gener-ate the conditions for extremely explosive Plinian eruptions.
      94  1