Now showing 1 - 10 of 15
  • Publication
    Restricted
    Groundwater mixing in a heterogeneous multilayer aquifer driven by geogenic CO2 fluxes: Evidence from chemical and isotopic composition of Ferrarelle waters (Riardo Plain, southern Italy)
    The successful management of carbon in the Earth's crust is critical for mitigating the increase of anthropogenic CO2 in the atmosphere. Carbon Capture and Storage (CCS) requires an understanding of the behavior of carbon in the crust and the development of robust monitoring techniques to constrain the movement, mechanisms, and pathways for any potential CO2 leakage. Here, we examine an aquifer from the Riardo Plain (Campania Region, southern Italy), which serves as a suitable natural analogue for CO2 migration to the critical zone (i.e., shallow crust and aquifers) and as a case study to evaluate the geochemical processes that occur when CO2-saturated fluids mix with freshwater in shallow aquifers. We investigate the behavior of various geochemical constituents (major and trace elements, δ18O–H2O, δ13C-DIC, and Rn content). Water from this area has a high degree of mineralization (EC 2500–3000 μS/cm), high HCO3- (~2.5 g/L), is saturated with respect to CaCO3, and is enriched in alkali ions (e.g., Na+ + K+). The high degree of mineralization occurs in groundwater that discharges from the basal aquifer of the Roccamonfina volcanic edifice (~6 km NW), with vast CO2 inputs that promote host rock leaching. Superficial volcanic aquifers are recharged by fresh meteoric precipitation when groundwater flows from carbonates at the edge of the plain to aquifers hosted in the southeastern slope of the Roccamonfina volcano. The presence of normal faults in this area permits natural upwelling of CO2-rich groundwater, which locally mixes with shallow freshwater present within the upper volcanic succession. Significant (R > 0.8) linear correlations between conservative elements suggest that groundwater geochemistry is dominated by a mixture of two main endmembers: (i) deep/mineralized waters and (ii) shallow/diluted waters. The intrusion of freshwater to volcanic aquifers induces oxidation, leading to adsorption of select elements (e.g., As and Ba) onto Fe-oxyhydroxide precipitates within these aquifers. Geochemical modeling suggests that CO2 saturation approaches 3 g/L, which agrees with direct measurements of CO2 flux. We conclude that our conceptual geochemical model helps to constrain mixing of CO2 with freshwater and to diagnose the secondary geochemical processes that influence aqueous geochemistry within CO2-influenced groundwater.
      61  2
  • Publication
    Restricted
    Gas chemistry of the Dallol region of the Danakil Depression in the Afar region of the northern-most East African Rift
    A combination of noble and major gas composition and isotope geochemistry provides a window into the source of volatiles and the mechanisms of transport associated with a series of hot springs located near the Dallol volcano within the Danakil Depression along the Red Sea arm of the Afar triple junction. The helium isotopic composition of these gases range up to 11.9 times the atmospheric ratio (11.9 R/Ra), which suggests that the Afar plume interacts with the Afar depression across at least the 300 km transect from Tendaho-Gabo basin to Dallol within the Danakil Depression. The 4He/40Ar* of ~14 in the mantle-rich end-member at Dallol indicates significant degassing prior to emplacement at Dallol either during basaltic dyke intrusions beneath the Danakil Depression or during the release and transport of fluids from a degassed subsolidus source in the upper mantle along high permeability fracture zones. The CO2/3He of the magmatic end-member is ~2× higher (7.7×109) and more positive δ13C (CO2) (−2.1‰) than other archetypal plumes (e.g. Hawaii, Iceland, etc.). The Dallol composition is consistent with a hypothetical model that assumes a plume-type starting composition and experiences ~92% degassing (where helium is preferentially degassed with respect to CO2) and the addition of CO2 from the thermal degradation of carbonate. Non-atmospheric excess N2 with a δ15N (N2) of +3.5 to +4‰ dominates the Dallol volatiles and suggests interaction between mantle fluids and Proterozoic meta-sediments. By comparing and modeling the range in atmospherically (e.g. 20Ne, 36Ar, 84Kr) and mantle-derived (e.g. 4He/40Ar* and CO2/3He) components in Dallol volatiles, we propose that the coherent variations in these gases result from mixing of magmatic volatiles with extremely degassed remnant fluids present within the hydrothermal reservoir.
      66  1
  • Publication
    Restricted
    Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy
    Deterioration of groundwater quality due to the introduction of pollutants from natural and anthropic sources has become a major environmental issue. We tested three methodologies in assessing groundwater quality and intrinsic aquifer vulnerability in the Agro-Aversano area (Southern Italy). A geographic information system (GIS)-based groundwater quality index (GQI) was realized to assess groundwater quality for drinking and irrigation use and, in parallel, standard SINTACS was applied to evaluate the intrinsic vulnerability of the aquifer. Nitrate concentrations and sodium absorption ratio (SAR) in groundwater samples were used to verify the reliability of vulnerability data. GQI analysis pointed to a general poor quality of groundwater both for drinking and irrigation use, especially in sub-urban areas. The spatial pattern of water quality from GQI analysis was positively related to nitrate and fluoride concentrations for drinking use and to bicarbonate and sodium concentrations for irrigation use, whose levels exceeded the WHO and FAO recommended thresholds, respectively. Standard SINTACS was found to be inadequate for describing the aquifer state, its results showing no correlation with nitrate concentration or SAR. Because of this inconsistency, we tested a novel approach combining GQI with SINTACS analysis. Results showed positive correlation with nitrate (r = 0.63) and SAR (r = 0.64) contents, thus pointing to combined SINTACS-GQI as a more reliable approach than standard methodologies.
      57  2
  • Publication
    Restricted
    Water and gas chemistry at Lake Kivu (DRC): Geochemical evidence of vertical and horizontal heterogeneities in a multibasin structure
    Waters and dissolved gases collected along vertical profiles in the five basins (Main, Kabuno Bay, Kalehe, Ishungu, and Bukavu) forming the 485 m deep Lake Kivu (Democratic Republic of the Congo) were analyzed to provide a geochemical conceptual model of the several processes controlling lake chemistry. The measured horizontal and vertical variations of water and gas compositions suggest that each basin has distinct chemical features produced by (1) different contribution from long circulating fluid system containing magmatic CO2, responsible of the huge CO2(CH4)-rich reservoir hosted within the deep lake water; (2) spatial variations of the biomass distribution and/or speciation; and (3) solutes from water-rock interactions. The Kabuno Bay basin is characterized by the highest rate of magmatic fluid input. Accordingly, this basin must be considered the most hazardous site for possible gas outburst that could be triggered by the activity of the Nyiragongo and Nyamulagira volcanoes, located a few kilometers north of the lake.
      56  1
  • Publication
    Open Access
    A geometrical method for quantifying endmembers' fractions in three‐component groundwater mixing
    We present a new geometrical method capable of quantifying and illustrating the outcomes of a three-component mixing dynamics. In a three-component mixing sce nario, classical algebraic equations and endmember mixing analysis (EMMA) can be used to quantify the contributions from each fraction. Three-component mixing of natural waters, either in an element–element plot or by using the EMMA mixing sub space is described by a triangular shaped distribution of sample points where each endmember is placed on an apex, while each side corresponds to the mixing function of the two endmembers placed at the apex, considering the third endmembers' con tribution equal to zero. Along each side, the theoretical mixing fractions can be com puted using mass balance equations. Samples with contributions from three endmembers will plot inside the triangle, while the homogeneous barycentric coordi nate projections can be projected onto the three sides. The geochemistry observed in the mineralized Ferrarelle aquifer system (southern Italy) results from three component mixing of groundwater, each with diagnostic geochemical compositions. The defined boundary conditions allow us to parameterize and validate the proce dures for modelling mixing, including selection of suitable geochemical tracer
      34  40
  • Publication
    Restricted
    Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic Complex (Argentina)
    (2013) ; ; ; ; ; ; ; ; ;
    Agusto, M.; IDEAN-GESVA, Dpto. Cs. Geológicas, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab.2, 1428, Buenos Aires, Argentina
    ;
    Tassi, F.; Institute of Geosciences and Earth Resources of the National Research Council (CNR-IGG), Via La Pira, 4, 50121, Florence, Italy; Department of Earth Sciences, University of Florence, Via La Pira, 4, 50121, Florence, Italy
    ;
    Caselli, A. T.; IDEAN-GESVA, Dpto. Cs. Geológicas, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab.2, 1428, Buenos Aires, Argentina
    ;
    Vaselli, O.; Institute of Geosciences and Earth Resources of the National Research Council (CNR-IGG), Via La Pira, 4, 50121, Florence, Italy ;Department of Earth Sciences, University of Florence, Via La Pira, 4, 50121, Florence, Italy
    ;
    Rouwet, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
    ;
    Capaccioni, B.; Department of Earth and Geological-Environmental Sciences, Piazza Porta San Donato, 1, 40126, Bologna, Italy
    ;
    Caliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
    ;
    Chiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
    ;
    Darrah, T.; Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
    ;
    ; ; ; ; ; ; ; ;
    Copahue volcano is part of the Caviahue–Copahue Volcanic Complex (CCVC),which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina–Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe–Ofqui strike slip and the northern Copahue–Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from −8.8‰ to −6.8‰ vs. V-PDB), δ15N values (+5.3‰ to +5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°–220 °C. On the contrary, rock–fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006–2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and isotope variations were likely related to injection of mafic magma that likely triggered the 2000 eruption. Therefore, changes affecting the magmatic systemhad a delayed effect on the chemistry of the CCVC gases due to the presence of the hydrothermal reservoir. However, geochemical monitoring activities mainly focused on the behavior of inert gas compounds (N2 and He), should be increased to investigate the mechanism at the origin of the unrest started in 2011.
      480  58
  • Publication
    Open Access
    Lithological Influence and Human Impact On the Hydrochemistry of an Apennine Watershed (Southern Italy)
    This study focuses on chemical and physical parameters of the Calore Catchment (Italy), to identify the sources of surface and groundwater mineralization. The study also evaluates water quality variations due to potential anthropogenic contamination. The proposed approach is a suitable screening tool to gain information on upland catchment characterized by complex hydrogeological and structural settings.
      41  9
  • Publication
    Restricted
    Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources
    On January 2, 2010 the Nyamuragira volcano erupted lava fountains extending up to 300 m vertically along an ~1.5 km segment of its southern flank cascading ash and gas on nearby villages and cities along the western side of the rift valley. Because rain water is the only available potable water resource within this region, volcanic impacts on drinking water constitutes a major potential hazard to public health within the region. During the 2010 eruption, concerns were expressed by local inhabitants about water quality and feelings of physical discomfort (e.g. nausea, bloating, indigestion, etc.) after consuming rain water collected after the eruption began. We present the elemental and ionic chemistry of drinking water samples collected within the region on the third day of the eruption (January 5, 2010). We identify a significant impact on water quality associated with the eruption including lower pH (i.e. acidification) and increases in acidic halogens (e.g. F(-) and Cl(-)), major ions (e.g. SO(4)(2-), NH(4)(+), Na(+), Ca(2+)), potentially toxic metals (e.g. Al(3+), Mn(2+), Cd(2+), Pb(2+), Hf(4+)), and particulate load. In many cases, the water's composition significantly exceeds World Health Organization (WHO) drinking water standards. The degree of pollution depends upon: (1) ash plume direction and (2) ash plume density. The potential negative health impacts are a function of the water's pH, which regulates the elements and their chemical form that are released into drinking water.
      60  1
  • Publication
    Restricted
    Geolithological and anthropogenic controls on the hydrochemistry of the Volturno river (Southern Italy)
    The present work aims to study the main chemical and physical water parameters in the upper and middle Volturno river catchment (southern Italy), between the Capo Volturno springs and the confluence with the Calore river. This study makes use of morphology, geolithology, tectonic, land use, and physico‐chemical (pH, electrical conductivity, redox potential, temperature, major ions, and 222Rn) data for the identification of the main sources of surface and groundwaters in the Volturno catchment and of their evolution and mixing both in base flow and peak flow conditions. The study was also performed to assess whether the alteration due to potential anthropogenic contamination may hamper the identification of natural “primitive” sources of surface waters, especially in the populated and farmed plains far from the river headwaters. Our data suggest that water chemistry of this stretch of the Volturno river is dominated mainly by lithology and, only marginally, by the intense exogenous activities and that this trend is appreciable in both base flow and peak flow conditions. The proposed simple geochemical approach based on easy‐to‐sample matrices and on cost‐effective standard methods is a valuable tool to address catchment functionality especially in upland areas, where complex geologic and structural settings, heterogeneous groundwater flow, and logistical issues are the rule rather than the exception. Because the upper and middle Volturno catchment is comparable with numerous valleys of the Mediterranean area, this study could be a reference for analogous applications.
      54  1
  • Publication
    Restricted
    Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian Plain (Southern Italy). Implications for geochemical survey
    The Campanian Plain (CP) shallow aquifer (Southern Italy) represents a natural laboratory to validate geochemical methods for differentiating diffuse anthropogenic pollution from natural water-rock interaction processes. The CP is an appropriate study area because of numerous potential anthropogenic pollution vectors including agriculture, animal husbandry, septic/drainage sewage systems, and industry. In order to evaluate the potential for geochemical methods to differentiate various contamination vectors, 538 groundwater wells from the shallow aquifer in Campanian Plain (CP) were sampled. The dataset includes both major and trace elements. Natural water-rock interactions, which primarily depend on local lithology, control the majority of geochemical parameters, including most of the major and trace elements. Using prospective statistical methods in combination with the traditional geochemical techniques, we determined the chemical variables that are enriched by anthropogenic contamination (i.e. NO3, SO4 and U) by using NO3 as the diagnostic variable for detecting polluted groundwater. Synthetic agricultural fertilizers are responsible for the majority of SO4 and U pollution throughout the CP area. Both SO4 and U are present in the groundmass of synthetic fertilizers; the uranium concentration is specifically applicable as a tracer for non-point source agricultural fertilizer contamination. The recognition of non-geological (anthropogenic) inputs of these elements has to be considered in the geochemical investigations of contaminated aquifers.
      62  2