Options
Di Martire, Diego
Loading...
6 results
Now showing 1 - 6 of 6
- PublicationOpen AccessLava flow field development and lava tube formation during the 1858–1861 eruption of Vesuvius (Italy), unravelled by historical documentation, lidar data and 3D mapping(Elsevier, 2024-10-01)
;Lemaire, Thomas; ; ; ;Repola, Leopoldo ;Esposito, Lorenzo; ; ; ; ; ;; ; ; ; ;Somma-Vesuvius is well known for its powerful Plinian explosive eruptions, however during the last eruptive cycle (1631-1944), persistent activity took place on the stratovolcano as mild and violent Strombolian, and effusive eruptions, forming more than one hundred lava flow fields. An important mechanism of lava transport within lava flow fields is the formation and development of lava tubes. The presence of lava tubes in a flow field can greatly increase their distance of emplacement. Observations of lava tubes Journal Pre-proof Journal Pre-proof at Vesuvius have been documented in historical records and speleological reports but no modern scientific studies are available. This work focuses on lava tubes formed in the compound lava flow field of the long-lived 1858 eruption (from 27 May 1858 to 12 April 1861) that was fed by seven eruptive fissures. The temporal and spatial evolution of the 1858 lava flow field was reconstructed using historical documentation. The exposed lava flow field surface was analysed using a 1-m resolution lidar Digital Surface Model (DSM). Surveys to fully digitize the interior and the overlying surface of the largest lava tube found in the 1858 lava flow field were conducted using a terrestrial laser scanner, optical cameras, and an Unmanned Aerial Vehicle (UAV). The accurate 3D model obtained was used to precisely quantify the inner dimensions and to better constrain the morphologies of the lava tube. Observed internal features were described and used to gain information on the formation and activity of the lava tube. Our data allowed us to understand that the described lava tube formed as an inflated lava flow inside which lava flowed through during an extended period ultimately draining out completely at the end of the eruption. Understanding how lava flow fields develop and how lava tubes form on Vesuvius is crucial to re-evaluate the last effusive activity of the volcano and its impact on hazard assessment.10 5 - PublicationOpen AccessTransient infiltration tests in pyroclastic soils with double porosityFallout volcanic deposits of Somma- Vesuvius (Campania, southern Italy), characterized by the presence of layers with contrasting textural and hydraulic properties, are frequently affected by shallow landslides during rainwater infiltration. The soils of the stratigraphic sequence present intra- particle pores, originated by the gases escaped during magma decompression in the volcanic conduit, thus are characterized by double porosity (i.e., intraparticle and interparticle pores), which is expected to affect their hydraulic behaviour, and to play a key role in rainwater infiltration through layered deposits. To understand the effect of double porosity on the hydraulic behaviour of the involved soils, controlled experiments have been carried out in an infiltration column. The experimental apparatus is provided with newly designed non-invasive Time Domain Reflectometry (TDR) probes, not buried in the investigated soil layers so as to minimize disturbance to the flow, allowing water content measurement during vertical flow processes. Specifically, transient flow experiments are carried out through reconstituted specimens of black scoriae and grey pumices, both loose pyroclastic granular soils from fallout deposits of Somma-Vesuvius, featuring double porosity with different pore size distributions, that were estimated by X-ray tomography and Mercury Intrusion Porosimetry. The experimental results highlight the effects of the double porosity and clearly indicate the different behaviour of the two soils during wetting and drying processes, mainly related to the different dimensions of intraparticle pores.
63 3 - PublicationOpen AccessMapping hydrothermal and supergene alteration zones associated with carbonate-hosted Zn-Pb deposits by using PRISMA satellite imagery supported by field-based hyperspectral data, mineralogical and geochemical analysis(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; Delineating hydrothermal alteration and supergene caps is fundamental for mineral exploration of sulfide ores. The aim of this study is to apply a multi-scale workflow based on hyperspectral remote and proximal sensing data in order to delineate hydrothermal dolomitization and supergene alteration associated with the Mississippi Valley-Type Zn-Pb(-Ag) deposit of Jabali (Western Yemen). The area was investigated through hyperspectral images derived from the new launched Italian Space Agency’s PRISMA satellite, which has a higher spectral resolution compared to multispectral sensors and covers the mineral-diagnostic wavelength regions (such as the 2100 nm to 2300 nm range) with a Signal to Noise Ratio (SNR) ≥ 100. Spectral mineral maps were produced through the band ratios method using specific feature extraction indices applied to the hyperspectral satellite data. The results were validated by using Visible Near InfraRed (VNIR) to Short Wave InfraRed (SWIR) reflectance spectra, mineralogical (XRPD) and geochemical (ICP-ES/MS) analyses on rock samples collected in the Jabali area. The dolomites footprint was mapped using a PRISMA Level 2C image, by enhancing the spectral differences between limestones and dolomites in the SWIR-2 region (major features centered at 2340 nm and 2320 nm, respectively). Gossans were detected due to the Fe3+ absorption band in the VNIR region at 900 nm. The Zn-Pb mineralized area, extended for approximately 25 km2, was thus identified by recognizing gossan occurrences in dolomites. The study demonstrates that the PRISMA satellite is effective in identifying Zn-Pb mineralized outcrops in sedimentary basins.82 17 - PublicationOpen AccessA Combined GNSS-DINSAR-IRT study for the characterization of a deep-seated gravitational slope deformation(2021-11-30)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Large deep-seated gravitational slope deformation (DsGSD) are slope instability phenomena affecting high relief-energy hillslopes and characterized by a high degree of complexity, enhanced also by wideness of the affected area and lithological heterogeneity. A combined approach based on different remote survey methodologies is herein presented with the aim of characterizing one of the most relevant DsGSDs in Sicily (Italy). The Scopello landslide involves the external margin of an overthrust plane, where a rigid carbonate tectonic unit overlies a ductile clayey substratum. The evidence of structural discontinuities crossing the rock masses and of unstable rock mass portions were pointed out by IRT, whose results were combined with the analysis of morphological features retrieved from a DTM, highlighting the presence of regional systems controlling the rock fracturing. Three GNSS surveys have been carried out in 2004 and 2005 on a 27-vertex geodetic network, attesting up to 20cm deformations caused by the triggering of landslides in the substratum. DInSAR results, obtained from the processing and interpretation of ENVISAT and Cosmo-SkyMed images, both in ascending and descending geometry for the time span 2002-2018, allowed evaluating the displacement rates over the area, highlighting that the movement is still active in its upper sector.43 6 - PublicationOpen AccessCapillary Barriers during Rainfall Events in Pyroclastic Deposits of the Vesuvian AreaIn the present paper, the capillary barrier formation at the interface between soil layers, which is characterized by textural discontinuities, has been analyzed. This mechanism has been investigated by means of a finite element model of a two-layer soil stratification. The two considered formations, belonging to the pyroclastic succession of the “Pomici di Base” Plinian eruption (22 ka, Santacroce et al., 2008) of the Somma–Vesuvius volcano, are affected by shallow instability phenomena likely caused by progressive saturation during the rainfall events. This mechanism could be compatible with the formation of capillary barriers at the interface between layers of different grain size distributions during infiltration. One-dimensional infiltration into the stratified soil was parametrically simulated considering rainfall events of increasing intensity and duration. The variations in the suction and degree of saturation over time allowed for the evaluation of stability variations in the layers, which were assumed as part of stratified unsaturated infinite slopes.
487 11 - PublicationRestrictedFrom ERS-1/2 to Sentinel-1: two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy)(2017-03-30)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;Land subsidence due to underground resources exploitation is a well-known problem that affects many cities in the world, especially the ones located along the coastal areas where the combined effect of subsidence and sea level rise increases the flooding risk. In this study, 25 years of land subsidence affecting the Municipality of Ravenna (Italy) are monitored using Advanced Differential Interferometric Synthetic Aperture Radar (A-DInSAR) techniques. In particular, the exploitation of the new Sentinel-1A SAR data allowed us to extend the monitoring period till 2016, giving a better understanding of the temporal evolution of the phenomenon in the area. Two statistical approaches are applied to fully exploit the informative potential of the A-DInSAR results in a fast and systematic way. Thanks to the applied analyses, we described the behavior of the subsidence during the monitored period along with the relationship between the occurrence of the displacement and its main driving factors.384 5