Now showing 1 - 10 of 13
  • Publication
    Restricted
    Post-seismic slip of the 2011 Tohoku-Oki earthquake from GPS observations: implications for depth-dependent properties of subduction megathrusts
    (2014-06-29) ; ; ; ; ;
    Silverii, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia
    ;
    Cheloni, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia
    ;
    D'Agostino, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia
    ;
    Selvaggi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia
    ;
    Boschi, E.; Dipartimento di Fisica, Settore di Geofisica, Università di Bologna, Bologna
    ;
    ; ; ; ;
    Here we inverted the GPS data to infer the coseismic slip of the Tohoku-Oki earthquake and the time-dependent afterslip distribution in the 4 months following the main shock. The Tohoku-Oki earthquake showed an unexpected magnitude and a characteristic depth-dependent differentiation of seismic energy radiation. In this context the estimation and comparison of the distribution of the fault portions that slip coseismically and post-seismically contribute to a better understanding of the variation of frictional characteristics of the plate interface. The inferred coseismic slip extends in a relatively compact region located updip from the hypocentre and reaches its highest value (about 60 m) near the trench. Afterslip occurs mostly outside the coseismic rupture and is distributed in two main modal centres. It reaches its largest values in an area located downdip of the coseismic slip and extends to a depth of 80 km. In the depth range between 30 and 50 km afterslip overlaps the portion of the fault that experienced historical moderate earthquakes, high-frequency seismic radiation and thrust-type aftershocks. The behaviour of this area can be explained by a rheologically heterogeneous region made of a ductile fault matrix interspersed with compact brittle asperities. On the contrary, the region beneath 50–60 km depth is probably characterized by a fully velocity strengthening behaviour. Southern afterslip, located off-Chiba Prefecture, is probably related to the Mw 7.9 Ibaraki-Oki aftershock. The northward extension of the afterslip stops at a latitude of about 40◦ N, just south of the off-Aomori region. This may be related to three large events occurred in this area during the last century and the consequent strong coupling or complete depletion of the accumulated strain that characterize this region.
      531  66
  • Publication
    Open Access
    Poroelastic model in a vertically sealed gas storage: a case study from cyclic injection/production in a carbonate aquifer
    Natural gas can be temporarily stored in a variety of underground facilities, such as depleted gas and oil fields, natural aquifers and caverns in salt rocks. Being extensively monitored during operations, these systems provide a favourable opportunity to investigate how pressure varies in time and space and possibly induces/triggers earthquakes on nearby faults. Elaborate and detailed numerical modelling techniques are often applied to study gas reservoirs. Here we show the possibilities and discuss the limitations of a flexible and easily formulated tool that can be straightforwardly applied to simulate temporal pore-pressure variations and study the relation with recorded microseismic events. We use the software POEL (POroELastic diffusion and deformation) which computes the poroelastic response to fluid injection/extraction in a horizontally layered poroelastic structure. We further develop its application to address the pres- ence of vertical impermeable faults bounding the reservoir and of multiple injection/extraction sources. Exploiting available information on the reservoir geometry and physical parameters, and records of injection/extraction rates for a gas reservoir in southern Europe, we perform an extensive parametric study considering different model configurations. Comparing modelled spatiotemporal pore-pressure variations with in situ measurements, we show that the inclusion of vertical impermeable faults provides an improvement in reproducing the observations and results in pore-pressure accumulation near the faults and in a variation of the temporal pore- pressure diffusion pattern. To study the relation between gas storage activity and recorded local microseismicity, we applied different seismicity models based on the estimated pore- pressure distribution. This analysis helps to understand the spatial distribution of seismicity and its temporal modulation. The results show that the observed microseismicity could be partly linked to the storage activity, but the contribution of tectonic background seismicity cannot be excluded.
      191  81
  • Publication
    Open Access
    Transient crustal deformation from karst aquifers hydrology in the Apennines (Italy)
    The increasing accuracy and spatiotemporal resolution of space geodetic techniques have positively impacted the study of shallow crustal deformation in response to the redistribution of water masses. Measurable deformations have been documented in areas where snow and water variability is large and persists over sufficiently long periods. Here we analyze GPS time series and hydrological data from the Central-Southern Apennines, a tectonically-active region hosting large karst aquifers. We document the occurrence of regional-scale horizontal and vertical transient deformation that is clearly correlated to seasonal and multiyear hydrological variability. These transient signals, which are most strongly observed at GPS sites surrounding the main karst aquifers, modulate long term tectonic deformation. Our results suggest that the karst aquifers in this region experience alternating periods of expansion and contraction in response to increasing/decreasing precipitation and, consequently, higher/lower hydraulic head in the aquifers. Thanks to the availability of a dense continuous GPS network and complementary hydrological datasets, we are able to verify the processes causing the observed deformation. We model the shallow crust in the region as a continuous anelastic solid and use Green's functions for finite strain cuboid sources to estimate the strain rate distribution associated with the GPS observations. We use the Mw 6.1 L'Aquila earthquake, which struck the Central Apennines in 2009 and whose effects are evident in geodetic data, to document the potential effects of moderate earthquakes on karst aquifers and to demonstrate the importance of correctly discerning tectonic from nontectonic signals in geodetic time series. Enhanced understanding of the karst aquifers behavior is of primary interest for improved management of this vital water resource and for a better understanding of the possible interactions between groundwater content and pore pressure variations in the crust and seismicity.
      195  151
  • Publication
    Open Access
    A Decade of Water Storage Changes Across the Contiguous United States From GPS and Satellite Gravity
    Increased climate variability is driving changes in water storage across the contiguous United States (CONUS). Observational estimates of these storage changes are important for validation of hydrological models and predicting future water availability. We estimate CONUS terrestrial water storage anomalies (TWSA) from 2007–2017 using Global Positioning System (GPS) displacements, constrained by lower-resolution TWSA observations from Gravity Recovery and Climate Experiment (GRACE) satellite gravity—a combination that provides higher spatiotemporal resolution than previous estimates. The relative contribution of seasonal, interannual, and subseasonal TWSA varies widely across CONUS watersheds, with implications for regional water security. Separately, we find positive correlation between TWSA and the El Niño/Southern Oscillation in the southeastern Texas-Gulf and South Atlantic-Gulf watersheds and an unexpected negative correlation in the southwest. In the western United States, atmospheric rivers (ARs) drive a large fraction of subseasonal TWSA, with the top 5% of ARs contributing 73% of total AR-related TWSA increases.
      9  4
  • Publication
    Open Access
    A New Analysis of Caldera Unrest through the Integration of Geophysical Data and FEM Modeling: The Long Valley Caldera Case Study
    The Long Valley Caldera, located at the eastern edge of the Sierra Nevada range in California, has been in a state of unrest since the late 1970s. Seismic, gravity and geodetic data strongly suggest that the source of unrest is an intrusion beneath the caldera resurgent dome. However, it is not clear yet if the main contribution to the deformation comes from pulses of ascending high-pressure hydrothermal fluids or low viscosity magmatic melts. To characterize the nature of the intrusion, we developed a 3D finite element model which includes topography and crust heterogeneities. We first performed joint numerical inversions of uplift and Electronic Distance Measurement baseline length change data, collected during the period 1985–1999, to infer the deformation-source size, position, and overpressure. Successively, we used this information to refine the source overpressure estimation, compute the gravity potential and infer the intrusion density from the inversion of deformation and gravity data collected in 1982–1998. The deformation source is located beneath the resurgent dome, at a depth of 7.5 ± 0.5 km and a volume change of 0.21 ± 0.04 km3. We assumed a rhyolite compressibility of 0.026 ± 0.0011 GPa−1 (volume fraction of water between 0% and 30%) and estimated a reservoir compressibility of 0.147 ± 0.037 GPa−1. We obtained a density of 1856 ± 72 kg/m3. This density is consistent with a rhyolite melt, with 20% to 30% of dissolved hydrothermal fluids.
      10  2
  • Publication
    Open Access
    Hydrologically Induced Deformation in Long Valley Caldera and Adjacent Sierra Nevada
    Vertical and horizontal components of GNSS displacements in the Long Valley Caldera and adjacent Sierra Nevada range show a clear correlation with hydrological trends at both multiyear and seasonal time scales. We observe a clear vertical and horizontal seasonal deformation pattern primarily attributable to the solid earth response to hydrological surface loading at large-to-regional (Sierra Nevada range) scales. Several GNSS sites, located at the eastern edge of the Sierra Nevada along the southwestern rim of Long Valley Caldera, also show significant horizontal deformation that cannot be explained by elastic deformation from surface loading. Due to the location of these sites and the strong correlation between their horizontal displacements and spring discharge, we hypothesize that this deformation reflects poroelastic processes related to snowmelt runoff water infiltrating into the Sierra Nevada slopes around Long Valley Caldera. Interestingly, this is also an area where water infiltrates to feed the local hydrothermal system, and where snowmelt-induced earthquake swarms have been recently detected.
      10  1
  • Publication
    Open Access
    Transient deformation of karst aquifers due to seasonal and multiyear groundwater variations observed by GPS in southern Apennines (Italy)
    We present GPS, hydrological, and GRACE (Gravity Recovery and Climate Experiment) observations in southern Apennines (Italy) pointing to a previously unnoticed response of the solid Earth to hydrological processes. Transient patterns in GPS horizontal time series near to large karst aquifers are controlled by seasonal and interannual phases of groundwater recharge/discharge of karst aquifers, modulating the extensional ∼3 mm/yr strain within the tectonically active Apennines. We suggest that transient signals are produced, below the saturation level of the aquifers and above a poorly constrained depth in the shallow crust, by time‐dependent opening of subvertical, fluid‐filled, conductive fractures. We ascribe this process to the immature karstification and intense tectonic fracturing, favoring slow groundwater circulation, and to multiyear variations of the water table elevation, influenced by variable seasonal recharge. The vertical component displays seasonal and multiyear signals more homogeneously distributed in space and closely correlated with estimates of total water storage from GRACE, reflecting the elastic response of the lithosphere to variations of surface water loads. The different sensitivities of vertical and horizontal components to the hydrologically induced deformation processes allow us to spatially and temporally resolve the different phases of the water cycle, from maximum hydrological loading at the surface to maximum hydrostatic pressure beneath karst aquifers. Finally, we suggest that transient deformation signals in the geodetic series of the Apennines are correlated to large‐scale climatic patterns (Northern Atlantic Oscillation) through their influence on precipitation variability and trends at the regional scale.
      161  110
  • Publication
    Open Access
    The 2011-2019 Long Valley Caldera inflation: New insights from separation of superimposed geodetic signals and 3D modeling
    Increasingly accurate, and spatio-temporally dense, measurements of Earth surface movements enable us to identify multiple deformation patterns and highlight the need to properly characterize the related source processes. This is particularly important in tectonically active areas, where deformation measurement is crucial for monitoring ongoing processes and assessing future hazard. Long Valley Caldera, California, USA, is a volcanic area where frequent episodes of unrest involve inflation and increased seismicity. Ground- and satellite-based instruments show that volcanic inflation renewed in 2011, and is continuing as of early 2021. Additionally, Long Valley Caldera is affected by the large, but spatially and temporally variable, amounts of precipitation falling on the adjacent Sierra Nevada Range. The density and long duration of deformation measurements at Long Valley Caldera provide an excellent collection of data to decompose time-series and separate multiple superimposed deformation sources. We analyze Global Navigation Satellite System (GNSS) time-series and apply variational Bayesian Independent Component Analysis (vbICA) decomposition method to isolate inflation-related signals from other processes. We show that hydrological forcing causes significant horizontal and vertical deformation at different temporal (seasonal and multiyear) and spatial (few to hundreds of km) scales that cannot be ignored while analyzing and modeling the tectonic signal. Focusing on the last inflation episode, we then improve on prior simplistic models of the inflation reservoir by including heterogeneous subsurface material properties and topography. Our results suggest the persistence and stability of the reservoir (prolate ellipsoid at about 8 km beneath the resurgent dome) and indicate a 40-50% reduction of the inflation rate after about 3 years from the inflation onset. The onset of the reduced inflation rate corresponded in time with the occurrence of a strong seismic swarm in the Caldera, but also to the temporal variation of climatic conditions in the area.
      13  2
  • Publication
    Restricted
    GInSAR: A cGPS Correction for Enhanced InSAR Time Series
    Earth surface displacements from interferometric synthetic aperture radar (InSAR) have long been used to study deformation from a wide range of geophysical processes. Whereas deformation rates can be robustly estimated from InSAR by averaging many individual deformation observations, noise in these observations has limited their utility for generating deformation time series. In this article, we introduce a novel combination of InSAR and Global Positioning System (GPS) data that align InSAR displacements to an absolute reference and reduces long-wavelength spatial errors prior to InSAR time series construction. We test our GInSAR (GPS-enhanced InSAR) methodology on Sentinel-1 data over the southern Central Valley, CA, USA, comparing GInSAR displacement velocities and time series with those from three other referencing techniques. We find that the GInSAR approach outperforms alternative methods, yielding mm-level displacement differences with respect to collocated cGPS. By contrast, other referencing methods can overestimate peak subsidence velocities in the Central Valley by upwards of 10%, deviate by tens of millimeters relative to cGPS validation time series, and contain spatial biases absent in the GInSAR methodology. We also present a modification to the widely used small baseline subset (SBAS) technique for time series estimation, whereby we use a temporal connectedness constraint to regularize the mathematical inversion and increase the number of InSAR pixels with valid time series estimates.
      15  1
  • Publication
    Open Access
    Lithospheric Sill Intrusions and Present‐Day Ground Deformation at Rhenish Massif, Central Europe
    The Rhenish Massif in Central Europe, which includes the Eifel Volcanic Fields, has shown ongoing ground deformation and signs of possible unrest. A buoyant plume exerting uplift forces at the bottom of the lithosphere was proposed to explain such deformation; the hypothesis of (possibly concurrent) melt accumulation in the crust/lithospheric mantle has not been explored yet. Here, we test deformation models in an elastic half-space considering sources of varying aspect ratio, size and depth. We explore the effects of data coverage, noise and uncertainty on the inferred source parameters. We find that the observed deformation would require melt accumulation in sub-horizontal sill-like structures expanding at the rate of up to ∼0.045 km3/yr. We discuss feasibility, limitations and possible interpretations of our resulting models and elaborate on further observations which may help constrain the structure of the Rhenish Massif magmatic system.
      29  5