Now showing 1 - 8 of 8
  • Publication
    Open Access
    Portable laser spectrometer for airborne and ground-based remote sensing of geological CO_2 emissions
    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
      78  324
  • Publication
    Open Access
    CO2 flux from Javanese mud volcanism
    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.
      87  19
  • Publication
    Open Access
    Large-area quantification of subaerial CO2 anomalies with portable laser remote sensing and 2D tomography
    Quantifying subaerial fluxes of CO2 is key in a diverse range of applications, including carbon capture and storage sites, emissions from urban areas and industrial sites such as oil refineries, or forecasting volcanic eruptions. All of these have one thing in common: they represent spatially extended sources with a generally unknown spatial distribution of CO2 concentration. The conventional approach to measure CO2 fluxes is to first measure CO2 concentrations in situ at several points and estimate 2D CO2 concentration profiles. Along with the plume transport speed, the concentration profiles can then be used to compute CO2 fluxes. Active remote sensing of CO2 concentrations offers crucial advantages over in situ probing, including a spatially comprehensive measurement, a safe measurement distance, and faster acquisition, which enables real-time monitoring. This makes it also a viable complement or alternative to fence-line monitoring at industrial sites. In the last few years, technology has advanced sufficiently to allow for the realization of robust and portable remote sensing platforms that are relatively inexpensive and user friendly. Within the frameworks of the European Research Council CO2Volc and proof-of-concept CarbSens projects, such a remote sensing platform has been developed to probe CO2 emissions. It may be operated from a fixed location on the ground, from moving platforms (e.g., cars), or be airborne. The kit was used to probe CO2 concentrations and perform a feasibility test to obtain a tomographic 2D image of the subaerial CO2 distribution inside the Solfatara crater, part of arguably the most hazardous volcano in the world: Campi Flegrei near Naples, Italy. The methodology could be applied directly to industrial applications, including quantifying fugitive CO2 at storage and industrial sites. An unmanned aerial vehicle portable kit is envisaged.
      177  52
  • Publication
    Open Access
    A new frontier in CO2 flux measurements using a highly portable DIAL laser system
    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes.
      120  26
  • Publication
    Open Access
    TROPOMI enables high resolution SO2 flux observations from Mt. Etna, Italy, and beyond
    The newly launched imaging spectrometer TROPOMI onboard the Sentinel-5 Precursor satellite provides atmospheric column measurements of sulfur dioxide (SO2) and other gases with a pixel resolution of 3.5 × 7 km2. This permits mapping emission plumes from a vast number of natural and anthropogenic emitters with unprecedented sensitivity, revealing sources which were previously undetectable from space. Novel analysis using back-trajectory modelling of satellite-based SO2 columns allows calculation of SO2 flux time series, which would be of great utility and scientific interest if applied globally. Volcanic SO2 emission time series reflect magma dynamics and are used for risk assessment and calculation of the global volcanic CO2 gas flux. TROPOMI data make this flux time series reconstruction approach possible with unprecedented spatiotemporal resolution, but these new data must be tested and validated against ground-based observations. Mt. Etna (Italy) emits SO2 with fluxes ranging typically between 500 and 5000 t/day, measured automatically by the largest network of scanning UV spectrometers in the world, providing the ideal test-bed for this validation. A comparison of three SO2 flux datasets, TROPOMI (one month), ground-network (one month), and ground-traverse (two days) shows acceptable to excellent agreement for most days. The result demonstrates that reliable, nearly real-time, high temporal resolution SO2 flux time series from TROPOMI measurements are possible for Etna and, by extension, other volcanic and anthropogenic sources globally. This suggests that global automated real-time measurements of large numbers of degassing volcanoes world-wide are now possible, revolutionizing the quantity and quality of magmatic degassing data available and insights into volcanic processes to the volcanological community.
      326  48
  • Publication
    Open Access
    Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy
    The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy) and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS) that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 246 t d􀀀1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.
      498  116
  • Publication
    Open Access
    Ground-Based Remote Sensing of Volcanic CO2 Fluxes at Solfatara (Italy)—Direct Versus Inverse Bayesian Retrieval
    CO2 is the second most abundant volatile species of degassing magma. CO2 fluxes carry information of incredible value, such as periods of volcanic unrest. Ground-based laser remote sensing is a powerful technique to measure CO2 fluxes in a spatially integrated manner, quickly and from a safe distance, but it needs accurate knowledge of the plume speed. The latter is often difficult to estimate, particularly for complex topographies. So, a supplementary or even alternative way of retrieving fluxes would be beneficial. Here, we assess Bayesian inversion as a potential technique for the case of the volcanic crater of Solfatara (Italy), a complex terrain hosting two major CO2 degassing fumarolic vents close to a steep slope. Direct integration of remotely sensed CO2 concentrations of these vents using plume speed derived from optical flow analysis yielded a flux of 717 121 t day􀀀1, in agreement with independent measurements. The flux from Bayesian inversion based on a simple Gaussian plume model was in excellent agreement under certain conditions. In conclusion, Bayesian inversion is a promising retrieval tool for CO2 fluxes, especially in situations where plume speed estimation methods fail, e.g., optical flow for transparent plumes. The results have implications beyond volcanology, including ground-based remote sensing of greenhouse gases and verification of satellite soundings.
      209  50
  • Publication
    Open Access
    2-D tomography of volcanic CO2 from scanning hard-target differential absorption lidar: the case of Solfatara, Campi Flegrei (Italy)
    Solfatara is part of the active volcanic zone of Campi Flegrei (Italy), a densely populated urban area where ground uplift and increasing ground temperature are observed, connected with rising rates of CO2 emission. A major pathway of CO2 release at Campi Flegrei is diffuse soil degassing, and therefore quantifying diffuse CO2 emission rates is of vital interest. Conventional in situ probing of soil gas emissions with accumulation chambers is accurate over a small footprint but requires significant time and effort to cover large areas. An alternative approach is differential absorption lidar, which allows for a fast and spatially integrated measurement. Here, a portable hard-target differential absorption lidar has been used to acquire horizontal 1-D profiles of column-integrated CO2 concentration at the Solfatara crater. To capture heterogenic features in the CO2 distribution, a 2-D tomographic map of the CO2 distribution has been inverted from the 1-D profiles. The scan was performed one-sided, which is unfavorable for the inverse problem. Nonetheless, the result is in agreement with independent measurements and furthermore confirms an area of anomalous CO2 degassing along the eastern edge as well as the center of the Solfatara crater. The method may have important implications for measurements of degassing features that can only be accessed from limited angles, such as airborne sensing of volcanic plumes. CO2 fluxes retrieved from the 2-D map are comparable, but modestly higher than emission rates from previous studies, perhaps reflecting an increase in CO2 flux or a more integrated measurement or both.
      226  99