Now showing 1 - 7 of 7
  • Publication
    Open Access
    CO2 storage in the Antarctica Sub-Continental Lithospheric Mantle as revealed by intra- and inter-granular fluids
    The investigation of the role played by CO2 circulating within the mantle during partial melting and metasomatic/refertilization processes, together with a re-consideration of its storage capability and re-cycling in the lithospheric mantle, is crucial to unravel the Earth's main geodynamic processes. In this study, the combination of petrology, CO2 content trapped in bulk rock- and mineral-hosted fluid inclusions (FI), and 3D textural and volumetric characterization of intra- and inter-granular microstructures was used to investigate the extent and modality of CO2 storage in depleted and fertile (or refertilized) Sub-Continental Lithospheric Mantle (SCLM) beneath northern Victoria Land (NVL, Antarctica). Prior to xenoliths entrainment by the host basalt, the Antarctic SCLM may have stored 0.2 vol% melt and 1.1 vol% fluids, mostly as FI trails inside mineral phases but also as inter-granular fluids. The amount of CO2 stored in FI varies from 0.1 μg(CO2)/g(sample) in olivine from the anhydrous mantle xenoliths at Greene Point and Handler Ridge, up to 187.3 μg/g in orthopyroxene from the highly metasomatized amphibole-bearing lherzolites at Baker Rocks, while the corresponding bulk CO2 contents range from 0.3 to 57.2 μg/g. Irrespective of the lithology, CO2 partitioning is favoured in orthopyroxene and clinopyroxene-hosted FI (olivine: orthopyroxene = 0.10 ± 0.06 to 0.26 ± 0.09; olivine: clinopyroxene = 0.10 ± 0.05 to 0.27 ± 0.14). The H2O/(H2O + CO2) molar ratios obtained by comparing the CO2 contents of FI to the H2O amount retained in pyroxene lattices vary between 0.72 ± 0.17 and 0.97 ± 0.03, which is well comparable with the values measured in olivine-hosted melt inclusions from Antarctic primary lavas and assumed as representative of the partition of volatiles at the local mantle conditions. From the relationships between mineral chemistry, thermo-, oxybarometric results and CO2 contents in mantle xenoliths, we speculate that relicts of CO2-depleted mantle are present at Greene Point, representing memory of a CO2-poor tholeiitic refertilization related to the development of the Jurassic Ferrar large magmatic event. On the other hand, a massive mobilization of CO2 took place before the (melt-related) formation of amphibole veins during the alkaline metasomatic event associated with the Cenozoic rift-related magmatism, in response to the storage and recycling of CO2-bearing materials into the Antarctica mantle likely induced by the prolonged Ross subduction.
      496  25
  • Publication
    Restricted
    EoS of mantle minerals coupled with composition and thermal state of the lithosphere: Inferring the density structure of peridotitic systems
    Unravelling the physical state and properties of mantle rocks is crucial for understanding both plate tectonics, seismic activity, and volcanism. In this context, the knowledge of accurate elastic parameters of constituent mineral phases, and their variations with pressure (P) and temperature (T), is an essential requirement, that coupled with the thermal state of the lithosphere can provide a better understanding of its petrophysics and thermochemical structure. In this paper, we present an assessment of the thermoelastic parameters [in the form of P–V–T–K Equations of State (EoS)] of orthopyroxene, clinopyroxene, spinel and garnet based on X-Ray diffraction data and direct elastic measurements available in literature. The newly developed EoS are appropriate to describe the elastic behaviour of these phases under the most relevant P–T conditions and bulk compositions of the Earth’s mantle. In combination with the published EoS for mantle olivine and magnesiochromite, these EoS are suitable to calculate the physical properties of mantle peridotites and their variation with P and T. Thanks to these EoS, we can evaluate how the variations in bulk composition and thermal regimes affect the density structure of the lithospheric mantle. Accordingly, the density structure of fertile and depleted peridotitic systems was calculated along the 35, 45 and 60 mWm􀀀 2 geothermal gradients at P comprised between 1 and 8 GPa. Under very cold geothermal gradients, the density of both fertile and depleted peridotitic systems progressively increases with depth, whereas under relatively hot conditions a first downwards decrease from 1 to ca 3 GPa is observed, followed by an increase downward. In mantle sections characterized by intermediate geotherms (45 mWm􀀀 2), the behaviour of the two systems differs up to ca 4 GPa, as the density of the depleted system remains nearly constant down to this depth whereas it moderately increases in the fertile system. The results of our simplified parameterisation, in agreement with classical thermodynamic modelling, indicate that the density structure of the lithospheric mantle is predominantly controlled by the P – T gradient variations, with some compositional control mostly arising at cold-intermediate thermal conditions. Integrated by geophysical and thermodynamic modelling, the newly developed and selected EoS could provide an alternative strategy to infer the elastic properties of mineral phases and peridotite rocks, under the most relevant P–T conditions and compositions of the Earth’s mantle, without requiring sets of end-member properties and solution models.
      50  15
  • Publication
    Open Access
    Subduction-related melt refertilisation and alkaline metasomatism in the Eastern Transylvanian Basin lithospheric mantle: Evidence from mineral chemistry and noble gases in fluid inclusions
    Calc-alkaline and alkaline magmatic activity is generally separated in space and/or in time. The Eastern Transylvanian Basin in Romania is one of the few places where, during Pleistocene, alkaline eruptions occurred contemporaneously with the calc-alkaline activity. Mantle xenoliths entrained in Perşani Mts. alkaline volcanic products have been studied in order to investigate the interaction of metasomatic agents of different magmatic affinities with the mantle wedge. Based on mineral major and trace element and noble gases in fluid inclusions, two main events have been recognized. The first was a pervasive, complete re-fertilization of a previously depleted mantle by a calc-alkaline subduction-related melt, causing the formation of very fertile, amphibole-bearing lithotypes. This is shown by the a) increased amounts of modal clinopyroxene up to 21.9 % with Al2O3 contents up to 8.16 wt%, higher than what is expected for clinopyroxene in Primordial Mantle; b) 4He/40Ar* ratios up to 1.2, within the reported range for mantle production; c) 3He/4He in olivine, opx and cpx of 5.8 ± 0.2 Ra, among the most radiogenic values of European mantle, below the typical MORB mantle value (8 ± 1 Ra), reflecting recycling of crustal material in the local lithosphere. The second event is related to later interaction with an alkaline metasomatic agent similar to the host basalts that caused slight LREE enrichment in pyroxenes and disseminated amphiboles and precipitation of vein amphiboles with a composition similar to amphiboles megacrysts also found in the Perşani Mts. volcanic deposits. This is highlighted by the 4He/40Ar* and 3He/4He values found in some opx and cpx, up to 2.5 and 6.6 Ra, respectively, more typical of magmatic fluids.
      736  19
  • Publication
    Open Access
    Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach
    (2008) ; ; ; ; ; ; ;
    Perinelli, C.; università di pisa
    ;
    Orlando, A.; CNR IGG Firenze
    ;
    Conte, A. M.; CNR IGG Roma
    ;
    Armienti, P.; università di pisa
    ;
    Borrini, D.; Università Firenze
    ;
    Faccini, B.; Università Firenze
    ;
    Misiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ; ; ;
    Magma generation in the Ross Sea system is related to partial melting of strongly metasomatised mantle sources where amphibole most probably plays a crucial role. In this context, metasomatism induced by a mela-nephelinite melt in lithospheric mantle of the Mt. Melbourne Volcanic Province (northern Victoria Land – NVL, Antarctica) was investigated experimentally studying the effects of melt interaction with lherzolite at 1.5-2.0 GPa and T=975-1300°C, and wehrlite at 1.0 GPa and T=1050-1250°C. The experiments were designed to induce melt infiltration into the ultramafic rocks. The observed modifications in minerals are compared with those found in mantle xenoliths from NVL. The effects of metasomatic modifications are evaluated on the basis of run temperature, distance from the infiltrating melt and on the diffusion rates of chemical components. Both in lherzolite and wehrlite, clinopyroxene exhibits large compositional variations ranging from primary diopside to high Mg-Cr-(Na) augitic and omphacitic clinopyroxenes in lherzolite, and to low Mg and high Ti-Al-Fe-Na augites in wehrlite. Olivine (in wehrlite) and spinel (in lherzolite) also result compositionally modified, the former shows enrichments in Fe, the latter displays a higher Cr/(Cr+Al) ratio. The systematic variations in mineral compositions imply modifications of the chemistry of the infiltrating melt as recorded by the glass veinlets and patches observed in some charges. In experiments involving wehrlite paragenesis, the glass composition approaches that of melt patches associated to both amphibole-free and amphibole-bearing natural samples, and is related to olivine+clinopyroxene crystallisation coupled with primary clinopyroxene dissolution at the contact between the metasomatising melt and the solid matrix. Even if amphibole crystallisation was not attained in the experiments, we were able to explain the occurrence of amphibole in the natural system considering that in this case a hot metasomatising melt infiltrates a cooler matrix.
      208  1363
  • Publication
    Restricted
    Geochemical evidence for a lithospheric origin of the Comoros Archipelago (Indian Ocean) as revealed by ultramafic mantle xenoliths from La Grille volcano
    Petrology and fluid inclusions (FI) geochemistry are increasingly used in tandem to constrain the compositional features and evolution of the lithospheric mantle. In this study, we combine petrography and mineral chemistry with analyses of noble gases (He, Ne and Ar) and CO2 in olivine, orthopyroxene- and clinopyroxene-hosted FI, as well as radiogenic isotope (Sr-Nd-Pb) systematics of ultramafic xenoliths collected at La Grille volcano in Grande Comore Island, aiming at better characterizing one of the most enigmatic and controversial portions of the western Indian Ocean lithospheric mantle. Xenoliths have been divided in three groups on the basis of their textural features: Group 1 (Opx-bearing), Group 2 (Opx-free) and Group 3 (Cumulate). Overall, petrographic observations and mineral phase compositions indicate that the sampled lithospheric portion experienced variable degrees of melting (from 5% to 35%), recorded by Group 1 most refractory harzburgites and lherzolites, as well as modal metasomatic processes as evidenced by the crystallization of cpx at the expense of opx in Group 1 fertile lherzolites and wehrlite and by Group 2 xenoliths. Crystallization of slightly oversaturated basic silicate melts seems also to have occurred, as shown by Group 3 xenoliths. A positive trend between temperature and ƒO2 is evident, with Group 2 and 3 xenoliths testifying for hotter and more oxidised conditions than Group 1. The variability of the 4He/40Ar* ratio (0.02–0.39) in Group 1, significantly below typical values of a fertile mantle (4He/40Ar* = 1–5), can be explained by the variable degrees of partial melting coupled to metasomatic enrichment that may account for modifying 4He/40Ar*, as also indicated by the mineral composition. He-Ar-CO2 relationships support the presence of a metasomatic CO2-rich process post-dating the melt extraction and the cumulate formation. The air-corrected 3He/4He isotopic ratios (6.30 to 7.36 Ra) are intermediate between the MORB mantle signature (8 ± 1Ra) and the SCLM (6.1 ± 0.9 Ra). The Ne and Ar isotopic signatures (20Ne/22Ne, 21/Ne/22Ne and 40Ar/36Ar) are consistent with mixing between an air-derived component and a MORB-like mantle, supporting the hypothesis for a lithospheric origin of the Comoros magmas, and arguing against any deep mantle plume-related contribution. This is also corroborated by combining Ne with He isotopes, showing that La Grille ultramafic xenoliths are far from the typical plume-type compositions. Sr-Nd-Pb isotope systematics in opx and cpx from La Grille additionally support a MORB-type signature for the lithospheric mantle beneath the area.
      116  3
  • Publication
    Restricted
    Sand volcano generated by a violent degassing from methane-saturated aquifers: The case study of Medolla (Modena, Italy)
    Sand volcano is an unusual and remarkable geological feature which forms when water-saturated sand deposits are set in motion by liquefaction and are ejected onto the surface. Commonly it is generated during earthquakes, as a result of liquefaction of waterlogged bodies at shallow depth, often causing wide damages. The generation of a sand volcano however can also occur unrelated to a seismic event. On the 10th of October 2014, near Medolla (Italy) during a Cone Penetration Test, a large amount of natural gas (CO2 and CH4) together with a mixture of water and sand were erupted, creating a sand volcano. The study of this event gives the possibility of understanding the dynamics of sand volcano generation, may enable to prevent other anomalies during future CPT tests and, more importantly, underlines the role that natural gas, stored in a sand aquifer, may play in triggering a liquefaction phenomenon. Our results suggest that episodes of gas eruptions require the onset of very peculiar conditions within the reservoir that feeds the emission. The simulations suggest that a geyser discharging a mixture of gas and water, capable of building a sand volcano, requires the presence of a shallow pressurized reservoir (1.2 MPa) where water coexists with a small amount of exsolved gas (a volume fraction of 0.05).The violent degassing occurred in Medolla confirms the role that a free gas phase may have in favoring the mobilization of liquid water and loose deposits, even in the absence of a seismic event.
      225  7
  • Publication
    Restricted
    Melting and metasomatism in West Eifel and Siebengebirge Sub-Continental Lithospheric Mantle: Evidence from concentrations of volatiles in fluid inclusions and petrology of ultramafic xenoliths
    The possibility of constraining the composition and evolution of specific portions of the Sub-Continental Lithospheric Mantle (SCLM) by means of an integrated study of petrography, mineral chemistry, and concentrations of volatiles in fluid inclusions (FI) is a novel approach that can provide clues on the recycling of volatiles within the lithosphere. This approach is even more important in active or dormant volcanic areas, where the signature of the gaseous emissions at the surface can be that of the underlying lithospheric mantle domains. In this respect, the ultramafic xenoliths brought to the surface in West Eifel (~0.5–0.01 Ma) and Siebengebirge (~30–6 Ma) volcanic fields (Germany) are ideal targets, as they provide direct information on one of the most intriguing portions of SCLM beneath the Central European Volcanic Province (CEVP). Five distinct populations from these localities were investigated using petrographic observations, mineral phase analyses and determination of He, Ne, Ar and CO2 contents in olivine-, orthopyroxene-, and clinopyroxene-hosted FI. The most refractory Siebengebirge rocks have highly forsteritic olivine, high-Mg#, low-Al pyroxene, and spinel with high Cr#, reflecting high extents (up to 30%) of melt extraction. In contrast, xenoliths from West Eifel are modally and compositionally heterogeneous, as indicated by the large forsterite range of olivine (Fo83–92), the Cr# range of spinel (0.1–0.6), and the variable Al and Ti contents of pyroxene. Equilibration temperatures vary from 870 ◦C to 1070 ◦C in Siebengebirge, and from ⁓900 ◦C to ⁓1190 ◦C in West Eifel xenoliths, at oxygen fugacity values generally between 􀀀 0.5 and + 1.3 ΔlogƒO2 [FMQ]. In both areas, the FI composition was dominated by CO2, with clinopyroxene, and most of the orthopyroxene had the highest concentrations of volatiles, while olivine was gas-poor. The noble gas and CO2 distributions suggest that olivine is representative of a residual mantle that experienced one or more melt extraction episodes. The 3He/4He ratio corrected for air contamination (Rc/Ra values) varied from 6.8 Ra in harzburgitic lithotypes to 5.5 Ra in lherzolites and cumulate rocks, indicating that the original MORB-like mantle signature was progressively modified by interaction with crustal-related components and melts having 3He/4He and 4He/40Ar* values consistent with those published for magmatic gaseous emissions. The Ne and Ar isotope systematics indicated that most of the data were consistent with mixing between a recycled atmospheric component and a MORB-like mantle, which does not necessarily require the involvement of a lower mantle plume beneath this portion of the CEVP. The major element distribution in mineral phases from West Eifel and Siebengebirge, together with the systematic variations in FI composition, the positive correlation between Al enrichment in pyroxene and equilibration temperatures, and the concomitant Rc/Ra decrease with increasing temperature, suggest that the SCLM beneath Siebengebirge represented the Variscan lithosphere in CEVP prior to the massive infiltration of melts/fluids belonging to the Quaternary Eifel volcanism. In contrast, West Eifel xenoliths reflect multiple heterogeneous metasomatism/refertilisation events that took place in the regional SCLM between ~6 and ~ 0.5 Ma.
      737  2