Now showing 1 - 2 of 2
  • Publication
    Restricted
    Chemical and isotopic features of cold and thermal fluids discharged in the Southern Volcanic Zone between 32.5°S and 36°S: Insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of Central Chile
    (2015-12-15) ; ; ; ; ; ; ; ;
    Benavente, O.
    ;
    Tassi, F.
    ;
    Reich, M.
    ;
    Aguilera, F.
    ;
    Capecchiacci, F.
    ;
    Gutierrez, F.
    ;
    Vaselli, O.
    ;
    Rizzo, A. L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    The Principal Cordillera of Central Chile is characterized by two belts of different ages and lithologies: (i) an eastern Mesozoic belt, consisting of limestone- and gypsum-rich sedimentary rocks at the border between Central Chile and Argentina, where the active volcanic arc occurs; and (ii) a western belt of Cenozoic age containing basaltic to andesitic volcanic and volcanoclastic sequences. This distinctive geological setting controls water chemistry of cold and thermal springs in the region, which are fed by meteoric water that circulates through deep regional structures. In the western sector of Principal Cordillera, water–rock interaction processes produce lowTDS, slightly alkaline HCO3 − dominatedwaters, although dissolution of underlyingMesozoic evaporitic rocks occasionally causes SO4 2− and Cl− enrichments. In this area, few Na+–HCO3 − and Na+–SO4 2− waters occurred, being likely produced by a Ca2+–Na+ exchange during water–rock interactions. Differently, the chemical features of Ca2+–Cl−waterswas likely related to an albitization–chloritization process affecting basaltic to andesitic rocks outcropping in this area. Addition of Na+–Cl− brines uprising from the eastern sector through the westverging thrust faults cannot be excluded, as suggested by the occurrence of mantle He (~19%) in dissolved gases. In contrast, in the eastern sector of the study region, mainly characterized by the occurrence of evaporitic sequences and relatively high heat flow,mature Na+–Cl− waters were recognized, the latter being likely related to promising geothermal reservoirs, as supported by the chemical composition of the associated bubbling and fumarolic gases. Their relatively low3He/4He ratios (up to 3.9 Ra)measured in the fumaroles on this area evidenced a significant crustal contamination by radiogenic 4He. The latter was likely due to (i) degassing from 4He-rich magma batches residing in the crust, and/or (ii) addition of fluids interacting with sedimentary rocks. This interpretation is consistent with the measured δ13C-CO2 values (from−13.2 to−5.72‰vs. V-PDB) and the CO2/3He ratios (up to 14.6 × 1010), which suggest that CO2 mostly originates from the limestone-rich basement and recycling of subducted sediments,with an important addition of sedimentary (organic-derived) carbon,whereas mantle degassing contributes at a minor extent. According to geothermometric estimations based on the Na+, K+, Mg2+ and Ca2+ contents, the mature Na+–Cl− rich waters approached a chemical equilibrium with calcite, dolomite, anhydrite, fluorite, albite, K-feldspar and Ca- andMg-saponites at a broad range of temperatures (up to ~300 °C) In the associated gas phase, equilibria of chemical reactions characterized by slowkinetics (e.g. sabatier reaction) suggested significant contributions from hot and oxidizing magmatic gases. This hypothesis is consistent with the δ13C-CO2, Rc/Ra, CO2/3He values of the fumarolic gases. Accordingly, the isotopic signatures of the fumarolic steam is similar to that of fluids discharged from the summit craters of the two active volcanoes in the study area (Tupungatito and Planchón–Peteroa). These results encourage the development of further geochemical and geophysical surveys aimed to provide an exhaustive evaluation of the geothermal potential of these volcanic–hydrothermal systems.
      346  80
  • Publication
    Restricted
    Geochemistry of fluid discharges from Peteroa volcano (Argentina-Chile) in 2010–2015: Insights into compositional changes related to the fluid source region(s).
    (2016) ; ; ; ; ; ; ; ; ; ; ; ;
    Paonita, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia
    ;
    Tassi, F.; Università di Firenze
    ;
    Chiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
    ;
    Caliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
    ;
    Capaccioni, B.; Università di Firenze
    ;
    Vaselli, O.; Università di Firenze
    ;
    Aguilera, F.; Servicio Nacional de Geología y Minería
    ;
    Benavente, O.; Universidad de Chile
    ;
    Agusto, M.; Universidad de Buenos Aires
    ;
    Gutierrez, F.; Universidad de Chile
    ;
    Caselli, A.; Universidad de Río Negro
    ;
    Saltori, O.; Universidad de Chile
    ;
    ; ; ; ; ; ;
    ;
    ; ;
    ;
    ;
    This study presents the first geochemical data of fluid discharges collected from February 2010 to March 2015 from the Planchón–Peteroa–Azufre Volcanic Complex (PPAVC), located in the Transitional Southern Volcanic Zone (TSVZ) at the border between Argentina and Chile. During the study period, from January 2010 to July 2011, Peteroa volcano experienced phreatic to phreatomagmatic eruption possibly related to the devastating Maule earthquake occurred on February 27, 2010. The compositional dataset includes low temperature (from 43.2 to 102 °C) gas discharges from (i) the summit of Peteroa volcano and (ii) the SE flank of Azufre volcano, both marked by a significant magmatic fluid contribution, as well as bubbling gases located at the foothill of the Peteroa volcanic edifice, which showed a chemical signature typical of hydrothermal fluids. In 2012, strong compositional changes affected the Peteroa gases fromthe summit area: the acidic gas species, especially SO2, increased, suggesting an input of fluids from magma degassing. Nevertheless, the R/Ra and δ13C–CO2 values decreased, which would imply an enhanced contribution from a meteoric-hydrothermal source. In 2014–2015, the chemical and isotopic compositions of the 2010–2011 gases were partially restored. The anomalous decoupling between the chemical and the isotopic parameters was tentatively interpreted as produced by degassing activity from a small batch of dacitic magma that in 2012 masked the compositional signature of the magmatic fluids released from a basalticmagma that dominated the gas chemistry in 2010–2011. This explanation reliably justifies the observed geochemical data, although the mechanisms leading to the change in time of the dominatingmagmatic fluid source are not clear. At this regard, a geophysical survey able to provide information on the location of the two magma batches could be useful to clarify the possible relationships between the compositional changes that affected the Peteroa fluid discharges and the 2010–2011 eruptive activity.
      352  43