Now showing 1 - 3 of 3
  • Publication
    Open Access
    Solubility of C-O-H mixturesin natural melts: new experimental data and application range of recent models
    (2005) ; ; ; ;
    Botcharnikov, R.; Institut für Mineralogie, Uni Hannover, Germany
    ;
    Freise, M.; Institut für Mineralogie, Uni Hannover, Germany
    ;
    Holtz, F.; Institut für Mineralogie, Uni Hannover, Germany
    ;
    Behrens, H.; Institut für Mineralogie, Uni Hannover, Germany
    ;
    ; ; ;
    The effect of pressure, temperature, and melt composition on CO2 and H2O solubilities in aluminosilicate melts, coexisting with CO2-H2O fluids, is discussed on the basis of previously published and new experimental data. The datasets have been chosen so that CO2 and H2O are the main fluid components and the conclusions are only valid for relatively oxidizing conditions. The most important parameters controlling the solubilities of H2O and CO2 are pressure and composition of melt and fluid. On the other hand, the effect of temperature on volatile solubilities is relatively small. At pressures up to 200 MPa, intermediate compositions such as dacite, in which both molecular CO2 and carbonate species can be dissolved, show higher volatile solubilities than rhyolite and basalt. At higher pressures (0.5 to 1 GPa), basaltic melts can incorporate higher amounts of carbon dioxide (by a factor of 2 to 3) than rhyolitic and dacitic melts. Henrian behavior is observed only for CO2 solubility in equilibrium with H2O-CO2 fluids at pressures <100 MPa, whereas at higher pressures CO2 solubility varies nonlinearly with CO2 fugacity. The positive deviation from linearity with almost constant CO2 solubility at low water activity indicates that dissolved water strongly enhances the solubility of CO2. Water always shows non-Henrian solubility behavior because of its complex dissolution mechanism (incorporation of OH-groups and H2O molecules in the melt). The model of Newman and Lowenstern (2002), in which ideal mixing between volatiles in both fluid and melt phases is assumed, reproduces adequately the experimental data for rhyolitic and basaltic compositions at pressures below 200 MPa but shows noticeable disagreement at higher pressures, especially for basalt. The empirical model of Liu et al. (2004) is applicable to rhyolitic melts in a wide range of pressure (0-500 MPa) and temperature (700- 1200°C) but cannot be used for other melt compositions. The thermodynamic approach of Papale (1999) allows to calculate the effect of melt composition on volatile solubilities but needs an update to account for more recent experimental data. A disadvantage of this model is that it is not available as a program code. The review indicates a crucial need of new experimental data for scarcely investigated field of pressures and fluid compositions and new models describing evident non-ideality of H-C-O fluid solubility in silicate melts at high pressures.
      303  966
  • Publication
    Open Access
    Oxidation state of iron in hydrous phono-tephritic melts
    (2008) ; ; ; ; ;
    Schuessler, J.; Liebniz Universitat Hannover
    ;
    Botcharnikov, R.; Liebniz Universitat Hannover
    ;
    Behrens, H.; Liebniz Universitat Hannover
    ;
    Misiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Freda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ;
    The oxidation state of iron in hydrous ultrapotassic (phono-tephritic) melts coexisting with mixed H2O-CO2 fluids was experimentally studied at 1200 and 1250{degree sign}C and pressures from 50 to 500 MPa. The oxygen fugacity (fO2) varied from NNO-2.9 to NNO+2.6 in logfO2, relative to the Ni-NiO oxygen buffer (NNO), as imposed by external redox conditions in experimental vessels and internal variations in water activity from 0.05 to 1 inside the capsules. The iron redox state of the quenched melts was determined by colorimetric wet-chemical analysis. This analytical method was optimized to measure the Fe2+/ΣFe ratio of mg-sized samples within ±0.03 (2σ). The accuracy and precision was tested with international reference materials and with standards analyzed by other methods. The Fe2+/ΣFe ratio of the experimental glasses covered a range of 0.41 to 0.85. A small negative effect of dissolved water on Fe2+/ΣFe at given fO2 was found, consistent with the thermodynamic model of Moretti (2005). No effect of pressure and temperature on the redox state of iron was resolvable in the investigated P-T range. Compared to hydrous ferrobasaltic melts that were studied previously under similar conditions, systematically lower Fe2+/ΣFe ratios were found for the phono-tephritic melts, in particular at low oxygen fugacities. This effect is attributed to the much higher K2O contents of the phono-tephrite (7.5 compared to 0.3 wt%), but the difference in ΣFeO (7.8 wt% in the phono-tephrite and 12.9 wt% in the ferrobasalt) may have an influence as well. Comparison of the experimentally obtained relationship between logfO2 and Fe3+/Fe2+ for the studied hydrous ultrapotassic melts with commonly used empirical and thermodynamic models suggest that these models can be successfully applied to phono-tephritc melts, although such compositions were not implemented in the model calibrations. Furthermore, the new data can be used to improve the models with respect to the effects of compositional variables, such as H2O or K2O, on the redox state of iron in silicate melts.
      190  657
  • Publication
    Restricted
    Solubility of H2O and CO2 in ultrapotassic melts at 1200 °C and 1250 °C and pressure from 50 to 500 MPa
    (2009) ; ; ; ; ; ;
    Behrens, H.; University of Hannover
    ;
    Misiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Freda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Vetere, F.; Universià della Calabria
    ;
    Botcharnikov, R. E.; University of Hannover
    ;
    Scarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ; ;
    The solubility of H2O-CO2 fluids in a synthetic analogue of a phono-tephritic lava composition from Alban Hills (Central Italy) was experimentally determined from 50 to 500 MPa and 1200 and 1250°C. H2O and CO2 contents in experimental glasses were determined by bulk analytical methods and FTIR spectroscopy. For the quantification of volatile concentrations by IR spectroscopy we have calibrated the absorption coefficients of water-related and carbon-related bands for phono-tephritic compositions. The determined absorption coefficients are 0.62 ± 0.06 L mol-1cm-1 for the band at ~4500 cm-1 (OH groups) and 1.02 ± 0.03 L mol-1cm-1 for the band at ~5200 cm-1 (H2O molecules). The coefficient for the fundamental OH stretching vibration at 3550 cm-1 is 63.9 ± 5.4 L mol-1cm-1. CO2 is bound in the phono-tephritic glass as CO32- exclusively; its concentration was quantified by the peak height of the doublet near the 1500 cm-1 band with the calibrated absorption coefficient of 308 ± 110 L mol-1cm-1. Quench crystals were observed in glasses with water contents exceeding 6 wt% even when using a rapid quench device, limiting the application of IR spectroscopy for water-rich glasses. H2O solubility in the ultrapotassic melts (7.52 wt% K2O) as a function of pressure is similar to the solubility in basaltic melts up to 400 MPa (~8 wt%) but is higher at 500 MPa (up to 10.71 wt%). At 500 MPa and 1200°C, the CO2 capacity of the phono-tephritic melt is about 0.82 wt%. The high CO2 capacity is probably related to the high K2O content of the melt. At both 200 and 500 MPa, the H2O solubility shows a non linear dependence on XfH2O in the whole XfH2O range. The variation of CO2 solubility with XfCO2 displays a pronounced convex shape in particular at 500 MPa, implying that dissolved H2O promotes the solubility of CO2. Our experimental data on CO2 solubility indicate that the interaction between phono-tephritic magma and carbonate rocks occurring in the Alban Hills magmatic system may result in partial dissolution of CO2 from limestone into the magma. However, although the CO2 solubility in phono-tephritic melts is relatively high compared to that in silicic to basaltic melts, the capacity for assimilation of limestone without degassing is nevertheless limited to < 1 wt% at the P-T conditions of the magma chamber below Alban Hills.
      205  30