Now showing 1 - 5 of 5
  • Publication
    Open Access
    Crystallization Kinetics of Alkali Feldspar in Peralkaline Rhyolitic Melts: Implications for Pantelleria Volcano
    Peralkaline rhyolites, associated with extensional tectonic settings, are medium to low viscosity magmas that often produce eruptive styles ranging from effusive to highly explosive eruptions. The role of pre-eruptive conditions and crystallization kinetics in influencing the eruptive style of peralkaline rhyolitic magmas has been investigated and debated considering equilibrium conditions. However, experimental constraints on the effect of disequilibrium in crystallization in such magmas are currently lacking in the literature. Therefore, we performed isobaric cooling experiments to investigate alkali feldspar crystallization kinetics in peralkaline rhyolitic melts. Experiments were performed under water-saturated, water-undersaturated, and anhydrous conditions between 25 and 100 MPa, at 670–790◦C and with experimental durations ranging from 0.5 to 420 h. Here we present the first data on crystallization kinetics of alkali feldspar, which is the main crystal phase in peralkaline rhyolitic melts, in order to improve our understanding of the evolutionary timescales of these melts and their ability to shift between effusive and explosive activity. Our experimental results indicate that the alkali feldspar nucleation delay can range from hours to several days as a function of undercooling and H2O content in the melt. Thus, a peralkaline rhyolitic magma can be stored at the pre-eruptive conditions for days without important variations of its crystal fraction. This suggests that crystallization may not necessarily play the main role in triggering fragmentation during explosive eruptions of peralkaline rhyolitic magmas.
      139  48
  • Publication
    Restricted
    Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments
    Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as afunction of pressure, effective undercooling (ΔTeff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (∆Teff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities (Na) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5–10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density (Na) and crystal fraction (φ), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.
      170  5
  • Publication
    Open Access
    Chlorine solubility in evolved alkaline magmas
    (2005) ;
    Carroll, M. R.; Dipartimento di Scienze della Terra, Università degli Studi di Camerino, Italy
    ;
    Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth’s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s) was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained). The high Cl contents (approaching 1 wt% Cl) observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.
      244  592
  • Publication
    Open Access
    STUDY OF THE GROWTH RATE IN DECOMPRESSION-INDUCED CRYSTALLIZATION EXPERIMENTS of alkali feldspars in trachytic melts of Phlegrean Fields (Napoli, Italy)
    (2008-09-09) ; ; ; ;
    Calzolaio, M.; Department of Earth Sciences - University of Camerino
    ;
    Arzilli, F.; DepartmentDepartment of Earth Sciences - University of Camerino
    ;
    Carroll, M. R.; Department of Earth Sciences- University of Camerino
    ;
    Piochi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
    ;
    ; ; ;
    no abstracts
      154  161
  • Publication
    Restricted
    Kinetics of crystal evolution as a probe to magmatism at Stromboli (Aeolian Archipelago, Italy)
    (2013-03-04) ; ; ; ; ;
    Agostini, C.
    ;
    Fortunati, A.
    ;
    Arzilli, F.
    ;
    Landi, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia
    ;
    Carroll, M. R.
    ;
    ;
    ;
    ;
    ;
    The kinetics of hydrated basaltic melts erupted during the present activity at Stromboli have been studied to estimate the growth and dissolution rate of plagioclase. Specifically, a high-K basalt composition (PST-9) has been studied to investigate magma and eruption dynamics at Stromboli volcano by combining crystallization kinetics of plagioclase and CSD measurements on natural samples from literature (Armienti et al., 2007; Fornaciai et al., 2009). A series of water-saturated decompression experiments over a range of final water pressure (Pf = 75–5 MPa) at constant temperature (1075 C) show that plagioclase is systematically present from 50 to 5 MPa at water saturated conditions. Moreover, these experiments show that anorthite (An) content decreases with decreasing PH2O, reaching the same composition as the natural plagioclase in Stromboli scoria at pressure below 20 MPa and that the plagioclase crystal fraction increases as the experimental conditions tend to lower final pressure. Plagioclase growth rate (GL) is observed to increase with undercooling for the Pf investigated during decompression experiments, except for the 75 MPa Pf serie that only has two samples with the presence of plagioclase crystals. The values of GL vary from 10 7 to 10 8 cm/s for Pf from 75 to 25 MPa, while at Pf from 10 to 5 MPa growth rates are approximately of 10 6 cm/s. A series of dissolution experiments at atmospheric pressure and over a range of temperature has been done for plagioclase (T range of 1220–1240 C). Dissolution rate (G-) for plagioclase (10 7 cm/s) tends to be slightly higher at higher temperature in the range of 1220–1240 C and appears to be time independent for the experimental durations investigated (10–30 h). These trends could be related to development of a diffusion-limited boundary layer adjacent to the dissolving crystal. By comparison of the experimental data on plagioclase composition, growth rates and dissolution in Stromboli basalt, it is possible to place the reservoir of the crystal-rich magma in the upper part (from 400 m to the surface) of the volcanic conduit. Kinetic data of the plagioclase, the most important phase of the shallow magmatic system of Stromboli, show that the magmatic processes are quite dynamic and in a relatively short time (hours or several days) the system can change considerably. Furthermore, the results from this work combined with observations on natural samples help to improve our knowledge of the magma plumbing system, of interactions between resident magma and new magmas, the dynamics of volcanic activity of Stromboli, and the time scales of magmatic processes that change in a few hours to 1 month.
      340  77