Options
Morin, Julie
Loading...
6 results
Now showing 1 - 6 of 6
- PublicationOpen AccessNew geological insights and structural control on fluid circulation in La Fossa cone (Vulcano, Aeolian Islands, Italy)(2009)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Barde-Cabusson, S.; Dipartimento di Scienze della Terra, Università Degli Studi di Firenze, Italy; LMV, Université Blaise Pascal, Clermont-Ferrand, France ;Finizola, A.; Laboratoire GéoSciences Réunion, UR, IPGP, UMR 7154, Saint-Denis, La Réunion, France; Istituto Nazionale di Geofisica e Vulcanologia, Palermo, Italy ;Revil, A.; Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA; CNRS-LGIT (UMR 5559), University of Savoie, Equipe Volcan, Chambéry, France ;Ricci, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Piscitelli, S.; IMAA-CNR, Laboratory of Geophysics Tito Scalo (PZ), Italy ;Rizzo, E.; IMAA-CNR, Laboratory of Geophysics Tito Scalo (PZ), Italy ;Angeletti, B.; CNRS-CEREGE, Université Paul Cézanne, Aix en Provence, France ;Balasco, M.; IMAA-CNR, Laboratory of Geophysics Tito Scalo (PZ), Italy ;Bennati, L.; Dept. of Earth & Atmospheric Sciences, Purdue University, West Lafayette, USA ;Byrdina, S.; LMV, Université Blaise Pascal, Clermont-Ferrand, France; Equipe de Géomagnétisme, IPGP, UMR 7154, 4, Place Jussieu, 75005 Paris, France ;Carzaniga, N.; Dipartimento di Scienze della Terra, Università Degli Studi di Firenze, Italy ;Crespy, A.; CNRS-CEREGE, Université Paul Cézanne, Aix en Provence, France ;Di Gangi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia ;Morin, J.; Laboratoire GéoSciences Réunion, UR, IPGP, UMR 7154, Saint-Denis, La Réunion, France; Université Paris 1, Panthéon-Sorbonne, Paris, France ;Perrone, A.; IMAA-CNR, Laboratory of Geophysics Tito Scalo (PZ), Italy ;Rossi, M.; Dipartimento di Geoscienze, Università di Padova, Italy; Università Milano-Bicocca, Milan, Italy ;Roulleau, E.; GEOTOP-UQAM-McGill, Montréal, Canada ;Suski, B.; Université de Lausanne (UNIL), Institut de Géophysique, Lausanne, Switzerland; CNRS-CEREGE, Université Paul Cézanne, Aix en Provence, France ;Villeneuve, N.; Institut de Recherche pour le Développement, US 140 ESPACE, La Réunion, France; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Electric resistivity tomography (ERT), self-potential (SP), soil CO2 flux, and temperature are used to study the inner structure of La Fossa cone (Vulcano, Aeolian Islands). Nine profiles were performed across the cone with a measurement spacing of 20 m. The crater rims of La Fossa cone are underlined by sharp horizontal resistivity contrasts. SP, CO2 flux, and temperature anomalies underline these boundaries which we interpret as structural limits associated to preferential circulation of fluids. The Pietre Cotte crater and Gran Cratere crater enclose the main hydrothermal system, identified at the centre of the edifice on the base of low electrical resistivity values (b20 Ω m) and strong CO2 degassing, SP, and temperature anomalies. In the periphery, the hydrothermal activity is also visible along structural boundaries such as the Punte Nere, Forgia Vecchia, and Palizzi crater rims and at the base of the cone, on the southern side of the edifice, along a fault attributed to the NW main tectonic trend of the island. Inside the Punte Nere crater, the ERT sections show an electrical resistive body that we interpret as an intrusion or a dome. This magmatic body is reconstructed in 3D using the available ERT profiles. Its shape and position, with respect to the Pietre Cotte crater fault, allows replacing this structure in the chronology of the development of the volcano. It corresponds to a late phase of activity of the Punte Nere edifice. Considering the position of the SP, soil CO2 flux, and temperature maxima and the repartition of conductive zones related to hydrothermal circulation with respect to the main structural features, La Fossa cone could be considered as a relevant example of the strong influence of preexisting structures on hydrothermal fluid circulation at the scale of a volcanic edifice.615 1368 - PublicationRestrictedHydrogeological insights at Stromboli volcano (Italy) from geoelectrical, temperature and CO2 soil degassing investigations(2006)
; ; ; ; ; ; ; ; ; ;Finizola, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia ;Revil, A.; CNRS-CEREGE, Universite´ Aix-Marseille III, Aix-en-Provence, France. ;Rizzo, E.; lstituto di Metodologie per l’ Analisi Ambientale, CNR, Potenza, Italy. ;Piscitelli, S.; lstituto di Metodologie per l’ Analisi Ambientale, CNR, Potenza, Italy. ;Ricci, T.; Universita` Roma Tre, Rome, Italy. ;Morin, J.; Universite´ de la Sorbonne, Paris, France. ;Angeletti, B.; CNRS-CEREGE, Universite´ Aix-Marseille III, Aix-en-Provence, France. ;Mocochain, L.; CNRS-CEREGE, Universite´ Aix-Marseille III, Aix-en-Provence, France. ;Sortino, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; ; ; ; ; ; ; ; Finding the geometry of aquifers in an active volcano is important for evaluating the hazards associated with phreatomagmatic phenomena and incidentally to address the problem of water supply. A combination of electrical resistivity tomography (ERT), self-potential, CO2, and temperature measurements provides insights about the location and pattern of ground water flow at Stromboli volcano. The measurements were conducted along a NE-SW profile across the island from Scari to Ginostra, crossing the summit (Pizzo) area. ERT data (electrode spacing 20 m, depth of penetration of 200 m) shows the shallow architecture through the distribution of the resistivities. The hydrothermal system is characterized by low values of the resistivity (<50 W m) while the surrounding rocks are resistive (>2000 W m) except on the North-East flank of the volcano where a cold aquifer is detected at a depth of 80 m (resistivity in the range 70–300 W m). CO2 and temperature measurements corroborate the delineation of the hydrothermal body in the summit part of the volcano while a negative self-potential anomaly underlines the position of the cold aquifer.347 31 - PublicationOpen AccessStructured elicitation of expert judgement in real-time eruption scenarios: an exercise for Piton de la Fournaise volcano, La Réunion island(2022)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Formalised elicitation of expert judgements has been used in recent years to help tackle several problematic societal issues, including volcanic crises and pandemic threats. We present an expert elicitation exercise for Piton de la Fournaise volcano, La Réunion island, held remotely in April 2021. This involved twenty-eight experts from nine countries who considered a hypothetical effusive eruption crisis involving a new vent opening in a high-risk area. The tele-elicitation presented several challenges, but is a promising and workable option for application to future volcanic crises. Our exercise considered an “uncommon” eruptive scenario with a vent outside the present caldera and within inhabited areas, and provided uncertainty ranges for several hazard-related questions for such a scenario (e.g. probability of eruption within a defined timeframe; elapsed time until lava flow reaches a critical location, and other hazard management issues). Our exercise indicated that such a scenario would probably present very different characteristics than the eruptions observed in recent decades, and that it is fundamental to include well prepared expert elicitations in updated civil protection evacuation plans to improve disaster response procedures.238 63 - PublicationRestrictedHydrothermal system of Central Tenerife Volcanic Complex, Canary Islands (Spain), inferred from self-potential measurements.(2014)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Villasante-Marcos, V.; Instituto Geográfico Nacional, Spain ;Finizola, A. ;Abella, R. ;Barde-Cabusson, S. ;Blanco, M. J. ;Brenes, B. ;Cabrera, V. ;Casas, B. ;De Agustín, P. ;Di Gangi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia ;Domínguez, I. ;García, O. ;Gomis, A. ;Guzmán, I. ;Iribarren, I. ;Levieux, G. ;López, C. ;Luengo, N. ;Martín, I. ;Moreno, M. ;Meletlidis, S. ;Morin, J. ;Moure, D. ;Pereda, J. ;Ricci, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Romero, E. ;Schütze, C. ;Suski-Ricci, B. ;Torres, P. ;Trigo, P.; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;An extensive self-potential survey was carried out in the central volcanic complex of Tenerife Island (Canary Islands, Spain). A total amount of ~237 kmof profileswith 20 mspacing betweenmeasurementswas completed, including radial profiles extending from the summits of Teide and Pico Viejo, and circular profiles inside and around Las Cañadas caldera and the northern slopes of Teide and Pico Viejo. One of themain results of this mapping is the detection ofwell-developed hydrothermal systemswithin the edifices of Teide and Pico Viejo, and also associated with the flank satellite M. Blanca and M. Rajada volcanoes. A strong structural control of the surface manifestation of these hydrothermal systems is deduced from the data, pointing to the subdivision of Teide and Pico Viejo hydrothermal systems in three zones: summit crater, upper and lower hydrothermal systems. Self-potential maxima related to hydrothermal activity are absent from the proximal parts of the NE and NW rift zones as well as from at least two of the mafic historical eruptions (Chinyero and Siete Fuentes), indicating that long-lived hydrothermal systems have developed exclusively over relatively shallow felsic magma reservoirs. Towards Las Cañadas caldera floor and walls, the influence of the central hydrothermal systems disappears and the self-potential signal is controlled by the topography, the distance to thewater table of Las Cañadas aquifer and its geometry. Nevertheless, fossil or remanent hydrothermal activity at some points along the Caldera wall, especially around the Roques de García area, is also suggested by the data. Self-potential data indicate the existence of independent groundwater systems in the three calderas of Ucanca, Guajara and Diego Hernández, with a funnel shaped negative anomaly in the Diego Hernández caldera floor related to the subsurface topography of the caldera bottom. Two other important self-potential features are detected: positive values towards the northwestern Santiago rift, possibly due to the relatively high altitude of the water-table in this area; and a linear set ofminima to thewest of Pico Viejo, aligned with the northwestern rift and related to meteoricwater infiltration along its fracture system.379 75 - PublicationOpen AccessThe buried caldera boundary of the Vesuvius 1631 eruption revealed by present-day soil CO2 concentration(2019)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; Volcanic risk at Vesuvius is one of the highest in the world due to the ~670,000 inhabitants living in the Red Zone, the area exposed to both pyroclastic flows and tephra fallout, to be evacuated before renewal of any eruptive activity. The national emergency plan for Vesuvius builds its risk zonation on a scenario similar to the last sub-Plinian eruption, which occurred in 1631. This study aims at providing new insights on the geometry of the caldera associated with this historical eruption. The impact of past Vesuvius eruptions on present-day soil CO2 concentration has been investigated by means of an extended geochemical survey carried out for identifying the circulation pathways of hydrothermal fluids inside the volcano. We performed 4,018 soil CO2 concentration measurements over the whole Somma-Vesuvius volcanic complex, covering an area of 50 km2. Besides relatively low values, the results show a significant spatial CO2 concentration heterogeneity over Somma-Vesuvius ranging from the atmospheric value (~400 ppm) up to ~24,140 ppm. The summit of Vesuvius shows an area with anomalous CO2 concentrations well matching the crater rim of the 1906 eruption. Along the cone flanks, secondary CO2 anomalies highlight a roughly circular preferential pathway detected along 8 radial profiles at distances between ~840 m and ~1,150 m from the bottom of the present-day crater resulting from the last eruption in 1944. In depth review of the available literature highlights an agreement between this circle-like shaped anomaly and the 1631 sub-Plinian eruption caldera boundary. Indeed, based on the historical chronicles the depression produced by the 1631 eruption had a diameter of 1,686 m, whereas the CO2 circular anomaly indicates a diameter of 1,956 m. Finally, the results were compared with a 3-D density model obtained from a recent gravity survey that corroborates both the literature and the CO2 data in terms of potential buried structure at the base of the Vesuvius cone.692 73 - PublicationOpen AccessExpert elicitation during volcanic crisesThis workshop is organized by the project Lava Advance in Vulnerable Areas financed by the Agence National pour la Recherche (ANR-LAVA, PI: A. Harris, program: DS0902 2016; Project: ANR-16 CE39-0009; https://anr.fr/Project-ANR-16-CE39-0009) in collaboration with the European Volcano Early warning system project (EVE, PI: J. Marti, grant agreement: n°826292 http://www.evevolcanoearlywarning.eu/), and focuses on crisis management in case of effusive volcanic eruption in Europe and worldwide. The aim of the workshop is to get together many actors in the world of mitigating, and responding to, effusive crises for a 4 days long experience-sharing and brain-storming exercise (including volcano observatories and civil protection).
88 43