Now showing 1 - 10 of 26
  • Publication
    Restricted
    Water and gas chemistry at Lake Kivu (DRC): Geochemical evidence of vertical and horizontal heterogeneities in a multibasin structure
    Waters and dissolved gases collected along vertical profiles in the five basins (Main, Kabuno Bay, Kalehe, Ishungu, and Bukavu) forming the 485 m deep Lake Kivu (Democratic Republic of the Congo) were analyzed to provide a geochemical conceptual model of the several processes controlling lake chemistry. The measured horizontal and vertical variations of water and gas compositions suggest that each basin has distinct chemical features produced by (1) different contribution from long circulating fluid system containing magmatic CO2, responsible of the huge CO2(CH4)-rich reservoir hosted within the deep lake water; (2) spatial variations of the biomass distribution and/or speciation; and (3) solutes from water-rock interactions. The Kabuno Bay basin is characterized by the highest rate of magmatic fluid input. Accordingly, this basin must be considered the most hazardous site for possible gas outburst that could be triggered by the activity of the Nyiragongo and Nyamulagira volcanoes, located a few kilometers north of the lake.
      56  1
  • Publication
    Open Access
    Mineralogy and geochemical trapping of CO2 in an Italian carbonatic deep saline aquifer: preliminary results
    (2008-04-18) ; ; ; ; ; ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Procesi, M.; Univeristà Roma TRE
    ;
    Buttinelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Montegrossi, G.; CNR-IGG Firenze
    ;
    Vaselli, O.; Dip. Sci. Terra Firenze
    ;
    Quattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ; ;
    CO2 Capture & Storage (CCS) is presently one of the most promising technologies for reducing anthropogenic emissions of CO2 . Among the several potential geologi- cal CO2 storage sites, e.g. depleted oil and gas field, unexploitable coal beds, saline aquifers, the latter are estimated to have the highest potential capacity (350-1000 Gt CO2 ) and, being relatively common worldwide, a higher probability to be located close to major CO2 anthropogenic sources. In these sites CO2 can safely be retained at depth for long times, as follows: a) physical trapping into geologic structures; b) hy- drodynamic trapping where CO2(aq) slowly migrates in an aquifer, c) solubility trap- ping after the dissolution of CO2(aq) and d) mineral trapping as secondary carbon- ates precipitate. Despite the potential advantages of CO2 geo-sequestration, risks of CO2 leakage from the reservoir have to be carefully evaluated by both monitoring techniques and numerical modeling used in “CO2 analogues”, although seepage from saline aquifers is unlikely to be occurring. The fate of CO2 once injected into a saline aquifer can be predicted by means of numerical modelling procedures of geochemical processes, these theoretical calculations being one of the few approaches for inves- tigating the short-long-term consequences of CO2 storage. This study is focused on some Italian deep-seated (>800 m) saline aquifers by assessing solubility and min- eral trapping potentiality as strategic need for some feasibility studies that are about to be started in Italy. Preliminary results obtained by numerical simulations of a geo- chemical modeling applied to an off-shore Italian carbonatic saline aquifer potential suitable to geological CO2 storage are here presented and discussed. Deep well data, still covered by industrial confidentiality, show that the saline aquifer, includes six Late Triassic-Early Jurassic carbonatic formations at the depth of 2500-3700 m b.s.l. These formations, belonging to Tuscan Nappe, consist of porous limestones (mainly calcite) and marly limestones sealed, on the top, by an effective and thick cap-rock (around 2500 m) of clay flysch belonging to the Liguride Units. The evaluation of the potential geochemical impact of CO2 storage and the quantification of water-gas-rock reactions (solubility and mineral trapping) of injection reservoir have been performed by the PRHEEQC (V2.11) Software Package via corrections to the code default ther- modynamic database to obtain a more realistic modelling. The main modifications to the Software Package are, as follows: i) addition of new solid phases, ii) variation of the CO2 supercritical fugacity and solubility under reservoir conditions, iii) addi- tion of kinetic rate equations of several minerals and iv) calculation of reaction sur- face area. Available site-specific data include only basic physical parameters such as temperature, pressure, and salinity of the formation waters. Rocks sampling of each considered formation in the contiguous in-shore zones was carried out. Mineralogy was determined by X-Ray diffraction analysis and Scanning Electronic Microscopy on thin sections. As chemical composition of the aquifer pore water is unknown, this has been inferred by batch modeling assuming thermodynamic equilibrium between minerals and a NaCl equivalent brine at reservoir conditions (up to 135 ̊C and 251 atm). Kinetic modelling was carried out for isothermal conditions (135 ̊C), under a CO2 injection constant pressure of 251 atm, between: a) bulk mineralogy of the six formations constituting the aquifer, and b) pre-CO2 injection water. The kinetic evolu- tion of the CO2 -rich brines interacting with the host-rock minerals performed over 100 years after injection suggests that solubility trapping is prevailing in this early stage of CO2 injection. Further and detailed multidisciplinary studies on rock properties, geochemical and micro seismic monitoring and 3D reservoir simulation are necessary to better characterize the potential storage site and asses the CO2 storage capacity.
      546  201
  • Publication
    Open Access
    Influence of permeability on the hydrothermal system at Vulcano Island (Italy): inferences from numerical simulations
    Volcano-hydrothermal systems are governed by complex interactions between fluid transport, and geochemical and mechanical processes. Evidence of this close interplay has been testified by distinct spatial and temporal correlations in geochemical and geophysical observations at Vulcano Island (Italy). To understand the interaction between fluid circulation and the geochemical and geophysical manifestations, we perform a parametric study to explore different scenarios by implementing a hydro-geophysical model based on the equations for heat and mass transfer in a porous medium and thermo-poroelastic theory. Numerical simulations allow us to define the controlling role of permeability distribution on the different modeled parameters as well as on the geophysical observables. Changes in the permeability within the highly fractured crater area could be responsible for the fluctuations in gas emission and temperature recorded during the crisis periods, which are accompanied by shallow volcano-seismicity in the absence of significant deformation and gravity variations. Despite the general medium permeability of the volcanic edifice, the presence of more highly permeable pathways, which allow the gas to rapidly escape, as testified by the presence of a well-developed fumarolic field, prevents the pressure buildup at shallow depths.
      437  12
  • Publication
    Open Access
    BARRIER EFFECT IN CO2 CAPTURE AND STORAGE FEASIBILITY STUDY
    (2009-09) ; ; ; ; ;
    Montegrossi, G.; CNR-IGG Firenze
    ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Bicocchi, G.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Vaselli, O.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Quattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ;
    CO2 Capture & Storage (CCS) in saline aquifer is one of the most promising technologies for reducing anthropogenic emission of CO2. Feasibility studies for CO2 geo-sequestration in Italy have increased in the last few years. Before planning a CCS plant an appropriate precision and accuracy in the prediction of the reservoir evolution during injection, in terms of both geochemical calculation and fluid flow properties, is demanded. In this work a geochemical model will be presented for an offshore well in the Tyrrhenian Sea where the injection of 1.5 million ton/year of CO2 is planned. The dimension of the trapping structure requires to study an area of about 100 km2 and 4 km deep. Consequently, three different simulations were performed by means of TOUGHREACT code with Equation Of State module ECO2N. The first simulation is a stratigraphic column with a size of 110*110*4,000 meters and a metric resolution in the injection/cap-rock area (total of 8,470 elements), performed in order to asses the geochemical evolution of the cap-rock and to ensure the sealing of the system. The second simulation is at large scale in order to assess the CO2 path from the injection towards the spill point (total of about 154,000 elements). During this simulation, the effect of the full coupling of chemistry with fluid flow and a relevant effect in the expected CO2 diffusion velocity was recognized. Owing to the effect of chemical reaction and coupling terms (porosity/permeability variation with mineral dissolution/precipitation), the diffusion velocity results to be 20% slower than in a pure fluid flow simulation. In order to give a better picture of this 'barrier' effect, where the diffusion of the CO2-rich acidic water into the carbonate reservoir originates a complex precipitation/dissolution area, a small volume simulation with a 0.1 m grid was elapsed. This effect may potentially i) have a big impact on CO2 sequestration due to the reduction of available storage volume reached by the CO2 plume in 20 years and/or the enhanced injection pressure and ii) outline the relevance of a full geochemical simulation in an accurate prediction of the reservoir properties.
      228  264
  • Publication
    Open Access
    Hydrothermal Alteration at the San Vito Area of the Campi Flegrei Geothermal System in Italy: Mineral Review and Geochemical Modeling
    The Campi Flegrei geothermal system sets in one of the most famous and hazardous volcanic caldera in the world. The geothermal dynamics is suspected to have a crucial role in the monitored unrest phases and in the eruption triggering as well. Numerical models in the literature do not properly consider the geochemical effects of fluid-rock interaction into the hydrothermal circulation and this gap limits the wholly understanding of the dynamics. This paper focuses on fluid-rock interaction effects at the Campi Flegrei and presents relevant information requested for reactive transport simulations. In particular, we provide: (1) an extensive review of available data and new petrographic analyses of the San Vito cores rearranged in a conceptual model useful to define representative geochemical and petrophysical parameters of rock formations suitable for numerical simulations and (2) the implemented thermodynamic and kinetic data set calibrated for the San Vito 1 well area, central in the geothermal reservoir. A preliminary 0D-geochemical model, performed with a different contribution of CO2 at high (165 ◦C) and low (85 ◦C) temperatures, firstly allows reproducing the hydrothermal reactions over time of the Campanian Ignimbrite formation, the most important deposits in the case study area.
      390  58
  • Publication
    Open Access
    An approach to the geochemical modelling of the Weyburn oil brines before and during the first 3 years of CO2 injection for Enhanced Oil Recovery by using experimental data and monitoring
    (2005-09-21) ; ; ; ; ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Montegrossi, G.; CNR-IGG Firenze
    ;
    Vaselli, O.; Dip.Scienze della Terra Firenze
    ;
    Pizzino, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Quattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ;
    EnCana’s CO2 injection EOR project at Weyburn (Saskatchewan, Canada) is the focal point of a multi-faceted research program, sponsored by IEA GHG R&D and numerous international industrial and government partners including the European Community (BGS, BRGM, INGV and GEUS research providers), to find co-optimization of “CO2-EOR Production” and “CO2 -Geological Storage”, addressed to environmental purposes, in the frame of the Kyoto Agreement Policies. The Weyburn oil-pull is recovered from Midale Beds (at the depth of 1300-1500 m). This formation consists of Mississipian shallow marine carbonate-evaporites that can be subdivided into two units: i) the dolomitic “Marly” and ii) the underlying calcitic “Vuggy”, sealed by an anhydrite cap. Presently, around 3 billions mc of supercritical CO2 have been injected into the “Phase A1”injection area that includes around 90 oil producers, 30 water injectors and 30 CO2 injection wells, build up since September 2000. INGV has carried out a geochemical monitoring programme -approximately thrice yearly from pre-injection (“Baseline” trip, August 2000) to September 2004- performing trace element and dissolved gas analysis along with fluids sampling surveys, the latter being performed by the Canadian partners. The experimental data are the base of a geochemical modelling, i.e. the main goal of the present study. In the past, assumptions and gap-acceptance have been made in the literature in the frame of the geochemical modelling of CO2 geological storage, in order to reconstruct the reservoir conditions (pressure, pH and boundary conditions). As these parameters of deep fluids cannot be measured in-situ, all this information must be computed by a a posteriori procedure involving the analytical data. In this work we applied a geochemical model to: i) reconstruct the in-situ reservoir chemical composition (including pH) and ii) evaluate the boundary conditions (pCO2, pH2S), necessary to implement the reaction path modelling. This is the starting point to assess the geochemical impact of CO2 into the oil reservoir and, as main target, to quantify water-gas-rock reactions. Our geochemical modelling procedure is based on the available data such as: a) bulk mineralogy of the Marly and Vuggy zones; b) gas-cap composition and c) pre-and post-CO2 injection selected water samples from Midale Beds. The PRHEEQC (V2.11) Software Package was used to reconstruct the in-situ reservoir composition by calculating the chemical equilibrium among the various phases at reservoir temperature (60°C) and pressure (150 bars) conditions by suitable thermodynamic corrections to code database. Then, we identified possible compositions of the initially reservoir liquid phases, always taking into account the case histories of the Marly and Vuggy units. Finally, we modelled the geochemical impact of CO2 injection on Weyburn reservoir subjected to both local equilibrium and kinetically controlled reactions. The inverse modelling simulation (IMS) was then performed in order to calculate the amounts of mass transfer of liquid, gas and solid phases that accounted for changes in the water chemistry between the 2000 and 2003 data-sets. IMS calculations suggest that the reservoir underwent mineralogical changes, such as precipitation of chalcedony, gypsum and kaolinite and dissolution of anhydrite and k-feldspar. Calcite dissolution is predicted, but the precipitation of others carbonates (dolomite, dawsonite and siderite) can also occur. All experimental data and geochemical modelling confirm that “solubility trapping” is prevailing in this early stage of CO2 injection. Further and detailed studies are necessary until all the kinetic parameters will fully be identified. Thermo-kinetic modeling of the evolution of the CO2-rich Weyburn brine interacting with host rock minerals over 1000 years is one of main aims of this study in the framework of a PhD programme between the INGV of Rome and the Department of Earth Sciences of Florence.
      224  93
  • Publication
    Open Access
    Modellizzazione delle variazioni composizionali delle specie dell’azoto (NH4 +, NO2 -, NO3 -) nelle acque di falda del Comune di Arezzo (Toscana)♦
    (2008-03-28) ; ; ; ; ; ;
    Buccianti, A.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Tassi, F.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Vaselli, O.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Nisi, B.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Montegrossi, G.; CNR-IGG Firenze
    ;
    ; ; ; ; ;
    Gli elementi chimici disciolti nelle acque continentali provengono dall’alterazione della crosta terrestre. L’acqua erode e dissolve i minerali delle rocce attraverso l’alterazione chimica avvalendosi del contributo dei gas presenti in atmosfera o nel sottosuolo. Il nitrato, una delle sostanze responsabili delle più gravi forme di inquinamento delle acque nei paesi in via di sviluppo, è un nutriente essenziale per la crescita delle piante e rappresenta un anello fondamentale del ciclo biogeochimico dell'azoto, in quanto viene prodotto dai batteri a partire dall'azoto atmosferico. In quantità eccessive il nitrato può essere dannoso per gli uomini e per gli animali. Elevati livelli di nitrato nell'acqua sono causati in larga misura dall'uso di fertilizzanti ricchi di nitrato e dal letame. In questo contesto, le condizioni redox delle acque naturali, che controllano la speciazione dei composti dell’azoto, sono altamente variabili perché controllate prevalentemente dall’attività biologica. In particolare, il bilancio fra i due processi dell’attività biologica, la fotosintesi e la respirazione (o decomposizione della sostanza organica), determina la presenza nel sistema di condizioni ossidanti o riducenti. I composti dell’azoto possono quindi essere considerati utili indicatori dello stato di salute di un acquifero superficiale. In questo lavoro sono analizzati i dati relativi ai tenori delle specie dell’azoto NH4 +, NO2 - e NO3 - relativi ad acque di falda campionate nell’area aretina nel corso della realizzazione dell’Atlante Geochimico delle Acque di Falda e di Scorrimento Superficiale del Comune di Arezzo. I dati sono analizzati proponendo nuove metodologie grafiche e numeriche per visualizzare lo stato del territorio nei confronti della pressione antropica come rilevata dal comportamento spaziale e temporale delle specie suddette.
      218  437
  • Publication
    Open Access
    Short term validated geochemical model of CO2 sequestration
    (2006-09-24) ; ; ; ; ;
    Montegrossi, G.; CNR-IGG
    ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Tassi, F.; Earth Science Dep., Florence
    ;
    Vaselli, O.; Earth Science Dep., Florence
    ;
    Quattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ;
    In this work we present a new approach to model the effects of CO2 sequestration that has been tested in the Weyburn test site. The Weyburn oil-pull is recovered from Midale Beds (at 1300-1500 m depth). This formation consists of Mississippian shallow marine evaporitic carbonates that can be divided into two units: i) the dolomitic “Marly” and ii) the underlying calcitic “Vuggy”, sealed by an anhydrite cap-rock. Presently, about 3 billions mc of supercritical CO2 have been injected into the “Phase A1” injection area. The aim of our model is to reconstruct i) the chemical composition of the reservoir; ii) the geochemical evolution of the reservoir with time as CO2 is injected and ii) the boundary conditions. The geochemical modeling has been performed by using the code PRHEEQC (V2.11) software package. The “primitive brine” composition was calculated on the basis of the chemical equilibrium among the various phases, assuming reservoir equilibrium conditions for the mineral assemblage with respect to a Na-Cl (Cl/Na=1.2) water, at T of 62 °C and P of 150 bars via thermodynamic corrections to the code database. A comparison between the chemical composition of the “primitive brine” and that analytically determined on water samples collected before the CO2 injection shows an agreement within 10 %. Furthermore, we computed the kinetic evolution of the reservoir by considering the local equilibrium and the kinetically controlled reactions taking into account the CO2 injected during four years of monitoring. The calculated chemical composition after the CO2 injection is consistent with the analytical data of samples collected in 2004, with the exception of calcium and magnesium contents. The results of the Inverse Modeling Simulation (IMS) suggest that the measured Ca and Mg contents are higher than those calculated from the solubility of calcite and dolomite, likely due to the complexation effect of carboxilic acid. The results of the application of the kinetic model lasting 100 years indicate that dissolution of K-feldspar and kaolinite and precipitation of chalcedony affect the Marly and Vuggy units. Furthermore, calcite tends to be dissolved as CO2 solubilises in the reservoir, whereas dolomite dissolution can be considered negligible. Dawsonite precipitates as secondary mineral. The CO2 content from solubility trapping (short/medium-term sequestration) calculation is ~0.8 mol/L.
      138  94
  • Publication
    Open Access
    A geochemical atlas of the ground- and running waters of Arezzo (Tuscany, Italy)
    (2005-09-21) ; ; ; ; ; ; ; ;
    Vaselli, O.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Buccianti, A.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Romizi, A.; Unit of Environment and Health, Arezzo Municpality, Via Trasimeno 11/6 52100 Arezzo (Italy)
    ;
    Nisi, B.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Tassi, F.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Minissale, A.; CNR – Institute of Geosciences and Earth Resources - Via La Pira 4, 50121 Florence (Italy)
    ;
    Montegrossi, G.; CNR – Institute of Geosciences and Earth Resources - Via La Pira 4, 50121 Florence (Italy)
    ;
    ; ; ; ; ; ; ;
    Since 2000 a joint project between the Department of Earth Science of Florence and the Unit of Environment and Health of the Municipality of Arezzo has allowed to geochemically characterise the superficial and ground waters of the municipal territory of Arezzo in order to establish the water quality and to investigate the main natural and anthropic processes responsible of their composition. The available geochemical data-base consists of more than 500 samples sites (90% of which are private wells and 7 and 3% are springs and running waters, respectively) on which physical parameters (temperature and electrical conductivity) and major, minor and trace dissolved species (pH, Ca, Mg, Na, K, NH4, HCO3, SO4, NO3, NO2, Cl, Br, F, heavy metals) have been performed by using the same sampling procedure and analytical methodology in order to have a consistent set of data. Fifteen selected sites have been analysed twice per year to evidence possible seasonal effects. No significant differences have been recorded. The Arezzo Basin, formed since Upper Pliocene, is a structural depression limited to the North and to the East by the Pratomagno and Chianti belts, respectively, and to the South and to the East by two tectonic lineaments (Val d’Arbia-Val Marecchia transversal and Chitignano normal faults). Along these tectonic discontinuities CO2-rich manifestations either seep out or exploited by private companies. Hydrogeologically, three main aquifers are recognised: i) a relatively deep aquifer hosted in Tertiary sandstone formations; ii) an intermediate aquifer hosted in Quaternary fluvio-lacustrine sediments and iii) a shallow aquifer in recent alluvional sediments. The content in Total Dissolved Solids (TDS) allows to classify the Arezzo waters in: oligomineral (69%), medium-mineral (30%) and mineral (1%) and they can be regarded as Ca(Mg)-HCO3 (87 %), Na(K)-HCO3 (7%), Ca(Mg)-SO4 (5%) and Na(K)-Cl (1%). It is noteworthy to point of that the Na(K)-HCO3 waters are aligned along the above mentioned tectonic systems. The quality of Arezzo waters has been referred to the Italian legislation that is addressed to the definition of the Maximum Admissible Concentration (MAC, DPR 236/88, Dlgs 31/01) and the Reference Value (RV, DPR 236/88) in terms of waters for the human consumption. Waters from the northern area of Arezzo overcome MAC for chlorides, sulphates and sodium; if we consider nitrogen species (NH4, NO2, NO3) the values overcome CMA for those waters collected into the city, its peripheral areas and in the south-western suburbs. Thematic maps has been produced, on the basis of the principles of linear Geostatistics, in order to analyse the spatial behaviour of the analysed variables. The aim was to find correlations with lithology, use of the soils, drainage density, pressure of antrophic activities and so on, and to identify sensible areas to monitor in their time evolution. The investigation has been developed starting from a detailed variographic analysis by means of the geochemical behaviour of each variable has been analysed in the different directions of the space while the estimation procedure to obtain the maps has been based on the application of sequential Gaussian simulation procedures.
      185  108
  • Publication
    Open Access
    RECONSTRUCTION OF POROSITY PROFILE OF AN OFF-SHORE DEEP WELL AND INPUT DATA FOR THE GEOCHEMICAL MODELING OF CO2 STORAGE IN A CARBONATE SALINE AQUIFER, IN ITALY.
    (2009-03-16) ; ; ; ; ; ; ;
    Montegrossi, G.; CNR-IGG Firenze
    ;
    Cantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Buttinelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Lucci, F.; Roma Tre University
    ;
    Quattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Tassi, F.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    Vaselli, O.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)
    ;
    ; ; ; ; ; ;
    CO2 Capture & Storage (CCS) is presently one of the most promising technologies for reducing anthropogenic emissions of CO2. The numerical modeling procedures of geochemical processes are one of the few approaches for investigating the short-long-term consequences of CO2 storage into a deep reservoir. We present the results of a new approach for the reconstruction of thermo-physical properties of an off-shore deep well (situated in the medium Tyrrhenian Sea, only 5 miles from the coast, in the frame of a distensive and relatively high heat flux regime as a whole,with good outcrops, on-shore, of its stratigraphy includes six Late Triassic-Early Jurassic carbonatic formations at the depth of 2500-3700 m b.s.l). We used the well-log coupled with temperature profile and new mineralogical analyses of the outcrops geological formations, being the original core data lacking. This kind of procedure is new as a whole, and it is useful to create background petro-physical data, for reservoir engineering numerical simulations both of mass-transport and geochemical as well as geo-mechanical, in order to asses its general properties, without re-opening the well itself for industrial use, such as CO2 geological storage. The profile of thermal capacity and conductivity, as well as porosity and permeability resulted very well constrained and detailed for further numerical simulation uses. Porosity is a very important parameter for reservoir engineering, mainly for numerical simulations including geochemical modelling, being strongly necessary for CO2 geological storage feasibility studies, because it allows to compute: i) the reservoir storage capacity for each trapping mechanisms (some algorithms are discussed in the presentation) and ii) the water/rock ratio (one of the input parameter requested by the geochemical software codes). A common problem, working with closed wells with, available the well-log report only, is to obtain data on the thermo-physical properties of the rock. Usually the available well-log report the temperature profile measured during drilling, the mud-loss and some other information on water and gas phase presence. In this work we present a procedure that allow to estimate porosity and permeability of the rock formation from the well-log data joint with a rough mineralogical analyses of the corresponding geological formations outcrop with the use of a boundary condition such as shallow heat flow measurements; a similar approach were presented from some authors that dealt with similar problems e.g. Singh V.K., (2007). The analyses of the rock samples proceed by using i) petro-graphical analyses; ii) calcimetry with Dietrich-Fruhling apparatus in order to analyse the carbonate content of each sample; iii) XRD Rietveld analyses in order to quantify the major mineralogy of each sample and to apply the dolomite correction to the results of calcimetry determination. Rietveld quantification procedure were performed by using Maud v 2.2.; iv) SEM analyses have been accomplished later in details. Successively, hints about the subsequent geochemical modelling approach are presented. Chemical composition of the aquifer pore water has been has been inferred by batch modeling assuming thermodynamic equilibrium between minerals and a NaCl equivalent brine at reservoir conditions (up to 70 °C and 200 bar). Numerical simulations has been carried out by the PRHEEQC (V2.11) Software Package via corrections to the code default thermodynamic to obtain a more realistic modeling.
      176  167