Now showing 1 - 2 of 2
  • Publication
    Restricted
    Twenty-first century projected summer mean climate in the Mediterranean interpreted through the monsoon-desert mechanism
    The term “monsoon-desert mechanism” indicates the relationship between the diabatic heating associated with the South Asian summer monsoon rainfall and the remote response in the western sub-tropics where long Rossby waves anchor strong descent with high subsidence. In CMIP5 twenty-first century climate scenarios, the precipitation over South Asia is projected to increase. This study investigates how this change could affect the summer climate projections in the Mediterranean region. In a linear framework the monsoon-desert mechanism in the context of climate change would imply that the change in subsidence over the Mediterranean should be strongly linked with the changes in South Asian monsoon precipitation. The steady-state solution from a linear model forced with CMIP5 model projected precipitation change over South Asia shows a broad region of descent in the Mediterranean, while the results from CMIP5 projections differ having increased descent mostly in the western sector but also decreased descent in parts of the eastern sector. Local changes in circulation, particularly the meridional wind, promote cold air advection that anchors the descent but the barotropic Rossby wave nature of the wind anomalies consisting of alternating northerlies/southerlies favors alternating descent/ascent locations. In fact, the local mid-tropospheric meridional wind changes have the strongest correlation with the regions where the difference in subsidence is largest. There decreased rainfall is mostly balanced by changes in moisture, omega and in the horizontal advection of moisture.
      50  1
  • Publication
    Open Access
    South Asian summer monsoon and the eastern Mediterranean climate: the monsoon-desert mechanism in CMIP5 simulations
    (2014-09) ; ; ; ;
    Cherchi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
    ;
    Annamalai, H.; University Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA
    ;
    Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
    ;
    Navarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
    ;
    ; ; ;
    Dry summers over the eastern Mediterranean are characterized by strong descent anchored by long Rossby waves, which are forced by diabatic heating associated with summer monsoon rainfall over South Asia. The large-scale teleconnection between rising and subsiding air masses is referred to as the "monsoon-desert mechanism.'' This study evaluates the ability of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models in representing the physical processes involved in this mechanism. An evaluation of statistics between summer climatologies of monsoon diabatic heating and that of vertical velocity over the eastern Mediterranean suggests a linear relationship. Despite large spatial diversity in monsoon heating, descent over the Mediterranean is coherently located and realistic in intensity. To measure the sensitivity of descent to the diversity in the horizontal and vertical distribution of monsoon heating, a series of linear atmosphere model experiments are performed. It is shown that column-integrated heating over both the Bay of Bengal and the Arabian Sea provides the largest descent with a more realistic spatial pattern. In the vertical, CMIP5 models underestimate the diabatic heating at upper levels, while they overestimate it at lower levels, resulting in a weaker forced response and weaker associated descent over the Mediterranean. A moist static energy budget analysis applied to CMIP5 suggests that most models capture the dominant role of horizontal temperature advection and radiative fluxes in balancing descent over the Mediterranean. Based on the objective analysis herein, a subset of models is identified that captures the teleconnection for reasons consistent with observations. The recognized processes vary at interannual time scales as well, with imprints of severe weak/strong monsoons noticeable over the Mediterranean.
      275  219