Options
Department of Earth and Geoenvironmental Sciences, “Aldo Moro” University, Bari, Italy
21 results
Now showing 1 - 10 of 21
- PublicationOpen AccessThe enigmatic 1693 AD tsunami in the eastern Mediterranean Sea: new insights on the triggering mechanisms and propagation dynamicsThe disastrous earthquake of 1693 AD caused over 60,000 causalities and the total destruction of several villages and towns in south-eastern Sicily. Immediately after the earthquake, a tsunami struck the Ionian coasts of Sicily and the Messina Strait and was probably recorded even in the Aeolian Islands and Malta. Over the last few decades, the event has been much debated regarding the location of the seismogenic source and the possible cause of the associated tsunami. The marine event has been related to both a submarine landslide and a coseismic displacement at the seafloor. To better define the most reliable sources and dynamics of the tsunami, we couple high-resolution marine seismic survey data with hydrodynamic modelling to simulate various scenarios of tsunami generation and propagation. Results from the simulations are compared with geomorphological evidence of past tsunami impacts, described in previous work along the coast of south-eastern Sicily, and within historical chronicles and reports. The most reliable scenario considers the 1693 event composed by two different tsunami waves: a first wave generated by the coseismic fault displacement at the seafloor and a second wave generated by a submarine landslide, triggered by the earthquake shaking. Tsunami modelling shows that a simultaneous movement between fault displacement and submarine mass movement could determine a destructive interference on the tsunami waves, resulting in a reduction in wave height. For this reason, the second tsunami wave probably occurred with a maximum delay of few minutes after the one generated by the earthquake and induced a greater flooding. The double-source model could explain the observation because in the course of other destructive earthquakes in south-eastern Sicily, such as that of 1169 AD, the associated tsunami caused less damages. This implies the need to better map, define and assess the hazard responsible for this type of tsunami events.
81 9 - PublicationOpen AccessRelative Sea-Level Rise Scenario for 2100 along the Coast of South Eastern Sicily (Italy) by InSAR Data, Satellite Images and High-Resolution Topography(2021-03-18)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ;; ; ;The global sea-level rise (SLR) projections for the next few decades are the basis for developing flooding maps that depict the expected hazard scenarios. However, the spatially variable land subsidence has generally not been considered in the current projections. In this study, we use geodetic data from global navigation satellite system (GNSS), synthetic aperture radar interferometric measurements (InSAR) and sea-level data from tidal stations to show the combined effects of land subsidence and SLR along the coast between Catania and Marzamemi, in south-eastern Sicily (southern Italy). This is one of the most active tectonic areas of the Mediterranean basin, which drives accelerated SLR, continuous coastal retreat and increasing effects of flooding and storms surges. We focus on six selected areas, which show valuable coastal infrastructures and natural reserves where the expected SLR in the next few years could be a potential cause of significant land flooding and morphological changes of the coastal strip. Through a multidisciplinary study, the multi-temporal flooding scenarios until 2100, have been estimated. Results are based on the spatially variable rates of vertical land movements (VLM), the topographic features of the area provided by airborne Light Detection And Ranging (LiDAR) data and the Intergovernmental Panel on Climate Change (IPCC) projections of SLR in the Representative Concentration Pathways RCP 2.6 and RCP 8.5 emission scenarios. In addition, from the analysis of the time series of optical satellite images, a coastal retreat up to 70 m has been observed at the Ciane river mouth (Siracusa) in the time span 2001–2019. Our results show a diffuse land subsidence locally exceeding 10 ± 2.5 mm/year in some areas, due to compacting artificial landfill, salt marshes and Holocene soft deposits. Given ongoing land subsidence, a high end of RSLR in the RCP 8.5 at 0.52 ± 0.05 m and 1.52 ± 0.13 m is expected for 2050 AD and 2100 AD, respectively, with an exposed area of about 9.7 km2 that will be vulnerable to inundation in the next 80 years.279 13 - PublicationOpen AccessComparing impact effects of common storms and Medicanes along the coast of south-eastern SicilyThe coastal vulnerability along the Mediterranean coasts is increasing, especially in response to the occurrence of tropical-like cyclones, known as Medicanes, which have become more intense than in the past. A peculiar case was the impact of Medicane Zorbas in September 2018 along the coasts of south-eastern Sicily, where it caused inland flooding and damages to the socio-economic activities. Here, Zorbas effects are reconstructed through post-event geomorphological surveys, interviews with direct witness and analyses of video recorded by surveillance systems or found in social media. These data allowed us to assess the flooding extent on seven coastal sectors located between Thapsos Peninsula and Marzamemi. Flooding caused by Zorbas appears to be greater than those produced by the main seasonal storms affecting the areas from 2015 to 2019; nevertheless, it is comparable with the flooding generated by Medicane Qendresa that impacted south-eastern Sicily in 2014. Wave propagation and extreme water level modelling, performed for the main storm events that occurred in the area since 2005, and analyses of data recorded by tide gauges of Catania, Porto Palo di Capo Passero and Malta since 2008, showed that Medicanes generate greater flooding than seasonal storms because they can induce higher and longer surge along the coastline. Collected data indicated that the surge generated by Zorbas reached a maximum value between about 0.8 m and 1.2 m above mean sea level (msl) along the coast of south-eastern Sicily. Results highlighted the need to better evaluate the coastal hazard related to the propagation of Medicanes, especially in the context of future climate change when these events will probably be characterized by longer duration and greater intensity than at the present.
41 113 - PublicationOpen AccessNew Evidence of MIS 3 Relative Sea Level Changes from the Messina Strait, Calabria (Italy)(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ; ; ;Investigation of sea-level positions during the highly-dynamic Marine Isotope Stage 3 (MIS 3: 29–61 kyrs BP) proves difficult because: (i) in stable and subsiding areas, coeval coastal sediments are currently submerged at depths of few to several tens of meters below the present sea level; (ii) in uplifting areas, the preservation of geomorphic features and sedimentary records is limited due to the erosion occurred during the Last Glacial Maximum (LGM) with sea level at a depth of −130 m, followed by marine transgression that determined the development of ravinement surfaces. This study discusses previous research in the Mediterranean and elsewhere, and describes new fossiliferous marine deposits overlaying the metamorphic bedrock at Cannitello (Calabria, Italy). Radiocarbon ages of marine shells (about 43 kyrs cal BP) indicate that these deposits, presently between 28 and 30 m above sea level, formed during MIS 3.1. Elevation correction of the Cannitello outcrops (considered in an intermediate-to-far-field position with respect to the ice sheet) with the local vertical tectonic rate and Glacial Isostatic Adjustment (GIA) rate allows the proposal of a revision of the eustatic depth for this highstand. Our results are consistent with recently proposed estimates based on a novel ice sheet modelling technique51 12 - PublicationOpen AccessThe Mediterranean Sea and the Gulf of Cadiz as a natural laboratory for paleotsunami research: Recent advancements(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; After the 2004 Indian Ocean (IOT) and the 2011 Tohoku-oki tsunamis, new research in tsunami-related fields was strongly stimulated worldwide and also in the Mediterranean. This research growth yields substantial advancements in tsunami knowledge. Among these advancements is the “Paleotsunami” research that has marked particular progress on the reconstruction of the tsunami history of a region. As an integration of the historical documentation available in the Mediterranean and the Gulf of Cadiz areas, geological and geoarchaeological records provide the insights to define the occurrence, characteristics, and impact of tsunamis of the past. Here, we present the recent advancements done for both the onshore and offshore realms. As for the onshore, we discuss case studies dealing with recent high-resolution works based on: a) direct push in situ sensing techniques, applied to identification and characterization of typical paleotsunami deposits features; b) combined XRF- X-CT approach, implemented for the identification of fine-scale sedimentary structures useful for the definition of the causative flow dynamics; c) the geoarchaeological “new field” contribution, with the development of specific diagnostic criteria in search for tsunami impact traces in archaeological strata; d) comparison of multiple dating methods and of different modeling codes for the definition of the potential source for the displacement of boulders of exceptional dimension, identified by 3D size calculation. As for the offshore advancements, we present case studies focusing on the recognition of tsunami deposits and their sedimentary traces in the geological record from the nearshore, thanks to diver-operated coring equipment, down to the continental slope, by means of vibracorer and long gravity core sampling in deeper areas. The examples provided show a multiproxy approach with a high potential of retrieving a complete record of paleotsunami traces at least during the Holocene. This is based on the combination of multidisciplinary approaches including X-ray imaging, high-resolution measurement of physical properties, X- ray fluorescence data, grain-size analysis, micropaleontology, palynological content, isotopic and optically stimulated luminescence dating methods.200 31 - PublicationOpen AccessThe First Video Witness of Coastal Boulder Displacements Recorded during the Impact of Medicane “Zorbas” on Southeastern Sicily(2020-05-23)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Over the last few years, several authors have presented contrasting models to describe the response of boulders to extreme waves, but the absence of direct observation of movements has hindered the evaluation of these models. The recent development of online video-sharing platforms in coastal settings has provided the opportunity to monitor the evolution of rocky coastlines during storm events. In September 2018, a surveillance camera of the Marine Protected Area of Plemmirio recorded the movement of several boulders along the coast of Maddalena Peninsula (Siracusa, Southeastern Sicily) during the landfall of the Mediterranean tropical-like cyclone (Medicane) Zorbas. Unmanned autonomous vehicle (UAV) photogrammetric and terrestrial laser scanner (TLS) surveys were performed to reconstruct immersive virtual scenarios to geometrically analyze the boulder displacements recorded in the video. Analyses highlighted that the displacements occurred when the boulders were submerged as a result of the impact of multiple small waves rather than due to a single large wave. Comparison between flow velocities obtained by videos and calculated through relationships showed a strong overestimation of the models, suggesting that values of flow density and lift coefficient used in literature are underestimated.68 47 - PublicationOpen AccessRelative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The coasts of the Mediterranean Sea are dynamic habitats in which human activities have been conducted for centuries and which feature micro-tidal environments with about 0.40 m of range. For this reason, human settlements are still concentrated along a narrow coastline strip, where any change in the sea level and coastal dynamics may impact anthropic activities. In the frame of the RITMARE and the Copernicus Projects, we analyzed light detection and ranging (LiDAR) and Copernicus Earth Observation data to provide estimates of potential marine submersion for 2100 for 16 small-sized coastal plains located in the Italian peninsula and four Mediterranean countries (France, Spain, Tunisia, Cyprus) all characterized by different geological, tectonic and morphological features. The objective of this multidisciplinary study is to provide the first maps of sea-level rise scenarios for 2100 for the IPCC RCP 8.5 and Rahmstorf (2007) projections for the above affected coastal zones, which are the locations of touristic resorts, railways, airports and heritage sites. On the basis of our model (eustatic projection for 2100, glaciohydrostasy values and tectonic vertical movement), we provide 16 high-definition submersion maps. We estimated a potential loss of land for the above areas of between about 148 km 2 (IPCC-RCP8. 5 scenario) and 192 km 2 (Rahmstorf scenario), along a coastline length of about 400 km209 19 - PublicationOpen AccessSea-Level Rise and Shoreline Changes Along an Open Sandy Coast: Case Study of Gulf of Taranto, Italy(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The dynamics of the sandy coast between Castellaneta and Taranto (Southern Italy) has been influenced by many natural and anthropogenic factors, resulting in significant changes in the coastal system over the last century. The interactions between vertical components of sea-level changes and horizontal components of the sedimentary budget, in combination with anthropogenic impact, have resulted in different erosion and accretion phases in the past years. Local isostatic, eustatic, and vertical tectonic movements, together with sedimentary budget changes, must be considered in order to predict the shoreline evolution and future marine submersion. In this study, all morpho-topographic data available for the Gulf of Taranto, in combination with Vertical Land Movements and sea-level rise trends, were considered by assessing the local evolution of the coastal trend as well as the future marine submersion. Based on the predicted spatial and temporal coastal changes, a new predictive model of submersion was developed to support coastal management in sea-level rise conditions over the next decades. After that, a multi-temporal mathematical model of coastal submersion was implemented in a Matlab environment. Finally, the effects of the relative sea-level rise on the coastal surface prone to submersion, according to the Intergovernmental Panel on Climate Change Assessment Reports (AR) 5 Representative Concentration Pathways (RCP) 2.6 and RCP 8.5 scenarios, were evaluated up to 2100.215 18 - PublicationOpen AccessPublicity waves based on manipulated geoscientific data suggesting climatic trigger for majority of tsunami findings in the Mediterranean – Response to ‘Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean’ by Marriner et al.(2019)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; This article is a response to the publication by Nick Marriner, David Kaniewski, Christophe Morhange, Clément Flaux, Matthieu Giaime, Matteo Vacchi and James Goff entitled “Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean”, published in October 2017 in Science Advances. Making use of radiometric data sets published in the context of selected palaeotsunami studies by independent research groups from different countries, Marriner et al. (2017) carried out statistical and time series analyses. They compared their results with an assessment of Mediterranean storminess since the mid-Holocene that was previously published by Kaniewski et al. (2016) based on a single-core study from coastal Croatia. Marriner et al. (2017) now present “previously unrecognized” 1500-year “tsunami megacycles” which they suggest correlating with Mediterranean climate deterioration. They conclude that up to 90 % of all the ‘tsunamis’ identified in original tsunami papers used for their study are “better as cribed to periods of heightened storminess”. In this response, we show that (i) the comparison of statistical data describing storm and tsunami events presented by Marriner et al. (2017) is incorrect both from a geographical and a statistical point of view, (ii) the assumed periods of central Mediterranean storminess published by Kaniewski et al. (2016) are missing convincing geological and geochronological evidence and are statistically incorrect, (iii) the palaeotsunami data that was originally collected by different groups of authors were manipulated by Marriner et al. (2017) in a way that the resulting data set – used as a benchmark for the entire study of these authors – is wrong and inaccurate, and that (iv) Marriner et al. (2017) did not address or even negate the original sedimentological studies’ presentation of comparative tsunami versus storm deposits for the selected individual localities. Based on a thorough and detailed evaluation of the geoscientific background and the methodological approach of the studies by Kaniewski et al. (2016) and Marriner et al. (2017), we conclude that there is no serious and reliable geoscientific evidence for increased storminess in the (central) Mediterranean Sea between 3400–2550, 2000–1800, 1650–1450, 1300–900 and 400–100 cal BP. The impact of those storms in the Mediterranean, producing geological traces somewhat comparable to those caused by tsunamis, is insignificantly small. For the period 1902–2017, Mediterranean tsunamis make up 73–98 % of all com- bined extreme wave events (EWE) leading to coastal flooding and appeared up to 181 times deadlier than comparable storm effects. This is the reason why coastal Mediterranean research has focused on Holocene records of the tsunami hazard, while research on comparable storm effects is of lower significance. The validity of geological evidence for Mediterranean EWE and their interpretation as caused by palaeotsunami impacts thus remains untouched. Tsunamis, in most cases directly and indirectly induced by seismo-tectonics, have always been a much greater threat to Mediterranean coastal regions than com- parable storm effects. ‘Tsunami megacycles’ as expressions of a 1500-year periodicity centered on the Little Ice Age, 1600 and 3100 cal BP that were correlated with questionable storm data do not exist. Cause and effect relationships work the other way round: Major tsunami events, testified by historical accounts, such as those that occurred in 1908 AD, 1755 AD, 1693 AD and 365 AD, induced numerous studies along Mediterranean coasts. These investigations resulted in a large number of publications that specifically focus on those time periods, suspected by Marriner et al. (2017) to bear signs of increased storminess, namely 200–300 BP and 1600 BP. The Mediterranean tsunami record cannot be ascribed to periods of increased storminess. On the contrary, the tsunami record as interpreted by the authors of the original papers cited by Marriner et al. (2017), is due to the outstandingly high seismo-tectonic activity of the region. Mediterranean tsunamis are mostly triggered by earthquakes or by earthquake-related secondary effects such as underwater mass movements. The study by Marriner et al. (2017) is also problematic because it includes simple basic statisti- cal mistakes and major methodological inconsistencies. The geomorphological and sedimentary back- ground of EWE deposits was not taken into account. The ‘broad brush’ approach used by Marriner et al. (2017) to sweep sedimentary deposits from tsunami origin into the storm bag origin, just on the basis of (false) statistics coupled with very broad and unreliable palaeoclimatic indicators and time frames, is misleading. The distortion of original data collected and interpreted by other research groups by Marriner et al. (2017) is particularly disturbing. Their publication is also bound to question in this case the effective- ness of scientific quality assurance in modern publishing commerce. Marriner et al. (2017: 7) talk down the considerable risk to human settlements and infrastructure along Mediterranean coasts in relation to tsunami and earthquake hazards. Their conclusion is not only wrong as a result of their incorrect data mining and analyses, it is also irresponsible with regard to national and international efforts of tsunami and earthquake risk mitigation.433 251 - PublicationRestrictedMorphometry and elevation of the last interglacial tidal notches in tectonically stable coasts of the Mediterranean Sea(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;We report detailed morphometric observations on several MIS 5.5 and a few older (MIS 11, 21, 25) fossil tidal notches shaped along carbonate coasts at 80 sites in the central Mediterranean Sea and at an additional six sites in the eastern and western Mediterranean. At each site, we performed precise measurements of the fossil tidal notch (FTN) width and depth, and of the elevation of its base relative to the base of the present tidal notch (PTN). The age of the fossil notches is obtained by correlation with biologic material associated with the notches at or very close to the site. This material was previously dated either through radiometric analysis or by its fossiliferous content. The width (i.e. the difference in elevation between base and top) of the notches ranges from 1.20 to 0.38 m, with a mean of 0.74 m. Although the FTN is always a few centimetres wider than the PTN, probably because of the lack of the biological reef coupled with a small erosional enlargement in the FTN, the broadly comparable width suggests that tide amplitude has not changed since MIS 5.5 times. This result can be extended to the MIS 11 features because of a comparable notch width, but not to the MIS 21 and 25 epochs. Although observational control of these older notches is limited, we regard this result as suggesting that changes in tide amplitude broadly occurred at the Early-Middle Pleistocene transition. The investigated MIS 5.5 notches are located in tectonically stable coasts, compared to other sectors of the central Mediterranean Sea where they are uplifted or subsided to ~100m and over. In these stable areas, the elevation of the base of the MIS 5.5 notch ranges from 2.09 to 12.48 m, with a mean of 5.7 m. Such variability, although limited, indicates that small land movements, deriving from slow crustal processes, may have occurred in stable areas. We defined a number of sectors characterized by different geologic histories, where a careful evaluation of local vertical land motion allowed the selection of the best representative elevation of the MIS 5.5 peak highstand for each sector. This elevation has been compared against glacial isostatic adjustment (GIA) predictions drawn from a suite of ice-sheet models (ICE-G5, ICE-G6 and ANICE-SELEN) that are used in combination with the same solid Earth model and mantle viscosity parameters. Results indicate that the GIA signal is not the main cause of the observed highstand variability and that other mechanisms are needed. The GIA simulations show that, even within the Mediterranean Basin, the maximum highstand is reached at different times according to the geographical location. Our work shows that, besides GIA, even in areas considered tectonically stable, additional vertical tectonic movements may occur with a magnitude that is significantly larger than the GIA.362 4
- «
- 1 (current)
- 2
- 3
- »