Options
Department of Earth and Geoenvironmental Sciences, “Aldo Moro” University, Bari, Italy
21 results
Now showing 1 - 10 of 21
- PublicationOpen AccessRelative Sea-Level Rise Scenario for 2100 along the Coast of South Eastern Sicily (Italy) by InSAR Data, Satellite Images and High-Resolution Topography(2021-03-18)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ;; ; ;The global sea-level rise (SLR) projections for the next few decades are the basis for developing flooding maps that depict the expected hazard scenarios. However, the spatially variable land subsidence has generally not been considered in the current projections. In this study, we use geodetic data from global navigation satellite system (GNSS), synthetic aperture radar interferometric measurements (InSAR) and sea-level data from tidal stations to show the combined effects of land subsidence and SLR along the coast between Catania and Marzamemi, in south-eastern Sicily (southern Italy). This is one of the most active tectonic areas of the Mediterranean basin, which drives accelerated SLR, continuous coastal retreat and increasing effects of flooding and storms surges. We focus on six selected areas, which show valuable coastal infrastructures and natural reserves where the expected SLR in the next few years could be a potential cause of significant land flooding and morphological changes of the coastal strip. Through a multidisciplinary study, the multi-temporal flooding scenarios until 2100, have been estimated. Results are based on the spatially variable rates of vertical land movements (VLM), the topographic features of the area provided by airborne Light Detection And Ranging (LiDAR) data and the Intergovernmental Panel on Climate Change (IPCC) projections of SLR in the Representative Concentration Pathways RCP 2.6 and RCP 8.5 emission scenarios. In addition, from the analysis of the time series of optical satellite images, a coastal retreat up to 70 m has been observed at the Ciane river mouth (Siracusa) in the time span 2001–2019. Our results show a diffuse land subsidence locally exceeding 10 ± 2.5 mm/year in some areas, due to compacting artificial landfill, salt marshes and Holocene soft deposits. Given ongoing land subsidence, a high end of RSLR in the RCP 8.5 at 0.52 ± 0.05 m and 1.52 ± 0.13 m is expected for 2050 AD and 2100 AD, respectively, with an exposed area of about 9.7 km2 that will be vulnerable to inundation in the next 80 years.279 11 - PublicationOpen AccessSea-Level Rise and Shoreline Changes Along an Open Sandy Coast: Case Study of Gulf of Taranto, Italy(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The dynamics of the sandy coast between Castellaneta and Taranto (Southern Italy) has been influenced by many natural and anthropogenic factors, resulting in significant changes in the coastal system over the last century. The interactions between vertical components of sea-level changes and horizontal components of the sedimentary budget, in combination with anthropogenic impact, have resulted in different erosion and accretion phases in the past years. Local isostatic, eustatic, and vertical tectonic movements, together with sedimentary budget changes, must be considered in order to predict the shoreline evolution and future marine submersion. In this study, all morpho-topographic data available for the Gulf of Taranto, in combination with Vertical Land Movements and sea-level rise trends, were considered by assessing the local evolution of the coastal trend as well as the future marine submersion. Based on the predicted spatial and temporal coastal changes, a new predictive model of submersion was developed to support coastal management in sea-level rise conditions over the next decades. After that, a multi-temporal mathematical model of coastal submersion was implemented in a Matlab environment. Finally, the effects of the relative sea-level rise on the coastal surface prone to submersion, according to the Intergovernmental Panel on Climate Change Assessment Reports (AR) 5 Representative Concentration Pathways (RCP) 2.6 and RCP 8.5 scenarios, were evaluated up to 2100.215 18 - PublicationRestrictedMillstone coastal quarries of the Mediterranean: A new class of sea level indicator(2014)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Lo Presti, V.; Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Italy ;Antonioli, F.; ENEA ;Auriemma, R.; Dipartimento di Beni Culturali, Università del Salento, Italy ;Ronchitelli, A.; Università di Siena, Italy ;Scicchitano, G.; Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Catania, Italy ;Spampinato, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia ;Anzidei, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Agizza, S.; Via Riviera di Chiaia 215, 80123 Napoli, Italy ;Benini, A.; Università della Calabria, Dipartimento di Archeologia e Storia delle Arti, Rende, CS, Italy ;Ferranti, A.; Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli “Federico II”, Italy ;Gasparo Morticelli, G.; Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Italy ;Giarrusso, C.; Via Arborea 17, 07100 Sassari, Italy ;Mastronuzzi, G.; mDipartimento di Scienze della Terra e Geoambientale, Università degli Studi ‘‘Aldo Moro’’, Bari, Italy ;Monaco, C.; Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Catania, Italy ;Porqueddu, A.; Via. E. Arborea, 07024, La Maddalena, Olbia-Tempio, Italy; ;; ; ;; ; ; ;; ; ; ; ; The coasts of Italy still preserve several remnants of coastal quarries built in antiquity, that now provide insights into the intervening sea-level changes occurred during the last millennia. In this paper, we show and discuss a new class of sea level indicator consisting of millstones carved along the rocky coast of southern Italy since 2500 BP, that are currently submerged. They were extracted from beachrocks, sandstones or similar sedimentary rocks, easier for carving by ancient carving tools. Our study focuses on 10 coastal sites located at Capo d’Orlando, Avola, and Letojanni, in Sicily; Soverato, Tropea, and Capo dell’Armi, in Calabria; Castellabate, Palinuro, and Scario, in Campania; and Polignano San Vito, in Apulia. Unfortunately, only limited archaeological information is available for these anthropic structures. Scario, one of these millstone quarries discussed here, has been dated through independent archaeological remains, allowing us to restrict the exploitation age to the end of XVII century. Present day elevations of these coastal sites were obtained through geo-archaeological surveys calibrated using the nearest tidal stations, together with geomorphological and tectonic interpretations. Data were compared against the latest sea level predictions based on glacio-hydro-isostatic models. Our results allow proposal of the age-range of these millstone quarries and to estimate the intervening relative sea level changes since the time when they were carved.327 84 - PublicationOpen AccessFlooding scenario for four Italian coastal plains using three relative sea level rise models(2017)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ;The coastal areas of the central Mediterranean Sea are sensitive to climate change and the consequent relative sea level rise. Both phenomena may affect densely urbanized and populated areas, causing severe damages. Our maps show the land-marine flooding projections as effects of the expected relative sea level rise for four Italian coastal plains using (i) IPCC AR5 estimations, based on the IPCC RCP 8.5 emission scenarios and (ii) the Rahmstorf 2007 model. Isostatic and tectonic data were added to the global projections to estimate the relative sea changes expected along the coastline by 2100, as well as sea-flooding. The northern Adriatic map shows the study area, extending for about 5500 km2, and is presented at a scale of 1:300,000 with two inset maps at a scale of 1:150,000. The Oristano coastal plain is about 125 km2; the map scale is at 1:60,000 with an inset map scale at 1:33,000. The Cagliari coastal study area extends for 61 km2; the map scale is at 1:60,000 with two inset maps at 1:30,000. The Taranto area extends for 4.2 km2 and is represented at a scale map of 1:30,000, while the three inset maps are at a scale of 1:10,000.334 128 - PublicationRestrictedQuantitative analysis of extensional joints in the southern Adriatic foreland (Italy), and the active tectonics of the Apulia region(2011-03)
; ; ; ; ; ; ;Di Bucci, D.; Dipartimento della Protezione Civile. Via Vitorchiano, 4 – 00189 Roma, Italy ;Caputo, R.; Università degli Studi di Ferrara, Dipartimento di Scienze della Terra. Via Saragat, 1 – 44100 Ferrara, Italy ;Mastronuzzi, G.; Università degli Studi di Bari, Dipartimento di Geologia e Geofisica. Via Orabona, 4 – 70125 Bari, Italy ;Fracassi, U.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Selleri, G.; Università degli Studi di Lecce, Dipartimento di Scienza dei Materiali. Via per Arnesano – 73100 Lecce, Italy ;Sansò, P.; Università degli Studi di Lecce, Dipartimento di Scienza dei Materiali. Via per Arnesano – 73100 Lecce, Italy; ; ; ; ; The Adriatic foreland of the Apennines comes ashore only in Apulia (easternmost Italy). Its southern part, our study area, lacks any structural analysis devoted to define its recent-to-active tectonics. Throughout the Quaternary, this region was affected by mild brittle deformation with rare faults, characterized by small displacement, and widespread extension joints, frequently organized in sets. Therefore, we conducted a quantitative and systematic analysis of the joint sets affecting Quaternary deposits, by applying an inversion technique ad hoc to infer the orientation and ratio of the principal stress axes, R = (σ2 − σ3)/(σ1 − σ3). Within a general extensional regime, we recognized three deformational events of regional significance. The oldest event, constrained to the early and middle part of the Middle Pleistocene, is characterized by variable direction of extension and R between 0.64 and 0.99. The penultimate event, dated late Middle Pleistocene, is characterized by an almost uniaxial tension, with a horizontal σ3 striking ∼N43°E; R is high, between 0.85 and 0.99. The most recent event is characterized by the lowermost R values, that never exceed 0.47 and are frequently <0.30, indicating a sort of horizontal ‘radial’ extension. This event is not older than the Late Pleistocene and possibly reflects the active stress field still dominating the entire study area.455 24 - PublicationRestrictedCoastal structure, sea-level changes and vertical motion of the land in the Mediterranean(2014)
; ; ; ; ; ; ; ;Anzidei, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Lambeck, K. ;Antonioli, F. ;Furlani, S. ;Mastronuzzi, G. ;Serpelloni, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Vannucci, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; ; ; ; ;; The Mediterranean basin is an important area of the Earth for studying the interplay between geodynamic processes and landscape evolution affected by tectonic, glacio-hydro-isostatic and eustatic factors. We focus on determining vertical deformations and relative sea-level change of the coastal zone utilizing geological, archaeological, historical and instrumental data, and modelling. For deformation determinations on recent decadal to centennial time scales, seismic strain analysis based on about 6000 focal mechanisms, surface deformation analysis based on some 850 continuous GPS stations, and 57 tide gauge records were used. Utilizing data from tectonically stable areas, reference surfaces were established to separate tectonic and climate (eustatic) signals throughout the basin for the last 20 000 years. Predominant Holocene subsidence (west coast of Italy, northern Adriatic sea, most of Greece and Turkey are areas at risk of flooding owing to relative sea-level rise), uplift (local areas in southwestern Italy and southern Greece) or stability (northwestern and central western Mediterranean and Levant area) were determined. Superimposed on the long trends, the coasts are also impacted by sudden extreme events such as recurring large storms and numerous, but unpredictable tsunamis caused by the high seismicity of parts of the basins.475 97 - PublicationOpen AccessPublicity waves based on manipulated geoscientific data suggesting climatic trigger for majority of tsunami findings in the Mediterranean – Response to ‘Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean’ by Marriner et al.(2019)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; This article is a response to the publication by Nick Marriner, David Kaniewski, Christophe Morhange, Clément Flaux, Matthieu Giaime, Matteo Vacchi and James Goff entitled “Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean”, published in October 2017 in Science Advances. Making use of radiometric data sets published in the context of selected palaeotsunami studies by independent research groups from different countries, Marriner et al. (2017) carried out statistical and time series analyses. They compared their results with an assessment of Mediterranean storminess since the mid-Holocene that was previously published by Kaniewski et al. (2016) based on a single-core study from coastal Croatia. Marriner et al. (2017) now present “previously unrecognized” 1500-year “tsunami megacycles” which they suggest correlating with Mediterranean climate deterioration. They conclude that up to 90 % of all the ‘tsunamis’ identified in original tsunami papers used for their study are “better as cribed to periods of heightened storminess”. In this response, we show that (i) the comparison of statistical data describing storm and tsunami events presented by Marriner et al. (2017) is incorrect both from a geographical and a statistical point of view, (ii) the assumed periods of central Mediterranean storminess published by Kaniewski et al. (2016) are missing convincing geological and geochronological evidence and are statistically incorrect, (iii) the palaeotsunami data that was originally collected by different groups of authors were manipulated by Marriner et al. (2017) in a way that the resulting data set – used as a benchmark for the entire study of these authors – is wrong and inaccurate, and that (iv) Marriner et al. (2017) did not address or even negate the original sedimentological studies’ presentation of comparative tsunami versus storm deposits for the selected individual localities. Based on a thorough and detailed evaluation of the geoscientific background and the methodological approach of the studies by Kaniewski et al. (2016) and Marriner et al. (2017), we conclude that there is no serious and reliable geoscientific evidence for increased storminess in the (central) Mediterranean Sea between 3400–2550, 2000–1800, 1650–1450, 1300–900 and 400–100 cal BP. The impact of those storms in the Mediterranean, producing geological traces somewhat comparable to those caused by tsunamis, is insignificantly small. For the period 1902–2017, Mediterranean tsunamis make up 73–98 % of all com- bined extreme wave events (EWE) leading to coastal flooding and appeared up to 181 times deadlier than comparable storm effects. This is the reason why coastal Mediterranean research has focused on Holocene records of the tsunami hazard, while research on comparable storm effects is of lower significance. The validity of geological evidence for Mediterranean EWE and their interpretation as caused by palaeotsunami impacts thus remains untouched. Tsunamis, in most cases directly and indirectly induced by seismo-tectonics, have always been a much greater threat to Mediterranean coastal regions than com- parable storm effects. ‘Tsunami megacycles’ as expressions of a 1500-year periodicity centered on the Little Ice Age, 1600 and 3100 cal BP that were correlated with questionable storm data do not exist. Cause and effect relationships work the other way round: Major tsunami events, testified by historical accounts, such as those that occurred in 1908 AD, 1755 AD, 1693 AD and 365 AD, induced numerous studies along Mediterranean coasts. These investigations resulted in a large number of publications that specifically focus on those time periods, suspected by Marriner et al. (2017) to bear signs of increased storminess, namely 200–300 BP and 1600 BP. The Mediterranean tsunami record cannot be ascribed to periods of increased storminess. On the contrary, the tsunami record as interpreted by the authors of the original papers cited by Marriner et al. (2017), is due to the outstandingly high seismo-tectonic activity of the region. Mediterranean tsunamis are mostly triggered by earthquakes or by earthquake-related secondary effects such as underwater mass movements. The study by Marriner et al. (2017) is also problematic because it includes simple basic statisti- cal mistakes and major methodological inconsistencies. The geomorphological and sedimentary back- ground of EWE deposits was not taken into account. The ‘broad brush’ approach used by Marriner et al. (2017) to sweep sedimentary deposits from tsunami origin into the storm bag origin, just on the basis of (false) statistics coupled with very broad and unreliable palaeoclimatic indicators and time frames, is misleading. The distortion of original data collected and interpreted by other research groups by Marriner et al. (2017) is particularly disturbing. Their publication is also bound to question in this case the effective- ness of scientific quality assurance in modern publishing commerce. Marriner et al. (2017: 7) talk down the considerable risk to human settlements and infrastructure along Mediterranean coasts in relation to tsunami and earthquake hazards. Their conclusion is not only wrong as a result of their incorrect data mining and analyses, it is also irresponsible with regard to national and international efforts of tsunami and earthquake risk mitigation.433 251 - PublicationRestrictedMorphometry and elevation of the last interglacial tidal notches in tectonically stable coasts of the Mediterranean Sea(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;We report detailed morphometric observations on several MIS 5.5 and a few older (MIS 11, 21, 25) fossil tidal notches shaped along carbonate coasts at 80 sites in the central Mediterranean Sea and at an additional six sites in the eastern and western Mediterranean. At each site, we performed precise measurements of the fossil tidal notch (FTN) width and depth, and of the elevation of its base relative to the base of the present tidal notch (PTN). The age of the fossil notches is obtained by correlation with biologic material associated with the notches at or very close to the site. This material was previously dated either through radiometric analysis or by its fossiliferous content. The width (i.e. the difference in elevation between base and top) of the notches ranges from 1.20 to 0.38 m, with a mean of 0.74 m. Although the FTN is always a few centimetres wider than the PTN, probably because of the lack of the biological reef coupled with a small erosional enlargement in the FTN, the broadly comparable width suggests that tide amplitude has not changed since MIS 5.5 times. This result can be extended to the MIS 11 features because of a comparable notch width, but not to the MIS 21 and 25 epochs. Although observational control of these older notches is limited, we regard this result as suggesting that changes in tide amplitude broadly occurred at the Early-Middle Pleistocene transition. The investigated MIS 5.5 notches are located in tectonically stable coasts, compared to other sectors of the central Mediterranean Sea where they are uplifted or subsided to ~100m and over. In these stable areas, the elevation of the base of the MIS 5.5 notch ranges from 2.09 to 12.48 m, with a mean of 5.7 m. Such variability, although limited, indicates that small land movements, deriving from slow crustal processes, may have occurred in stable areas. We defined a number of sectors characterized by different geologic histories, where a careful evaluation of local vertical land motion allowed the selection of the best representative elevation of the MIS 5.5 peak highstand for each sector. This elevation has been compared against glacial isostatic adjustment (GIA) predictions drawn from a suite of ice-sheet models (ICE-G5, ICE-G6 and ANICE-SELEN) that are used in combination with the same solid Earth model and mantle viscosity parameters. Results indicate that the GIA signal is not the main cause of the observed highstand variability and that other mechanisms are needed. The GIA simulations show that, even within the Mediterranean Basin, the maximum highstand is reached at different times according to the geographical location. Our work shows that, besides GIA, even in areas considered tectonically stable, additional vertical tectonic movements may occur with a magnitude that is significantly larger than the GIA.362 4 - PublicationRestrictedMillstone quarries along the Mediterranean coast: Chronology, morphological variability and relationships with past sea levels(2017)
; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ;The coast of the Mediterranean provide several remnants of ancient coastal quarries, which are now useful to study sea level change occurring during the last millennia. Millstones quarries were exploited with same quarrying techniques from rocks like beachrocks, sandstones or similar lithologies, were shaped to be suitable to grind olives, seeds and wheat, to produce oil and flour, or to break apart soft rocks. In this study we integrated historical sources, aerial photography, field surveys and palaeo sea-level modelling to investigate a number of millstones quarries with the aim to asses the intervening sea level change that occurred since the quarries were abandoned. We investigated on their chronology, spatial distribution and spatial relationship to the sea-level. Our results indicate that most of these were carved close to sea level between 1.45 ka and 0.25 ka cal BP, but mainly around 0.45 cal ka BP. Despite the uncertainties associated with the chronology in, we found good agreement between their lowest elevation (between 0.33 m and −0.06 m) and the paleo sea-levels, as predicted by the GIA models.290 6 - PublicationOpen AccessThe Mediterranean Sea and the Gulf of Cadiz as a natural laboratory for paleotsunami research: Recent advancements(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; After the 2004 Indian Ocean (IOT) and the 2011 Tohoku-oki tsunamis, new research in tsunami-related fields was strongly stimulated worldwide and also in the Mediterranean. This research growth yields substantial advancements in tsunami knowledge. Among these advancements is the “Paleotsunami” research that has marked particular progress on the reconstruction of the tsunami history of a region. As an integration of the historical documentation available in the Mediterranean and the Gulf of Cadiz areas, geological and geoarchaeological records provide the insights to define the occurrence, characteristics, and impact of tsunamis of the past. Here, we present the recent advancements done for both the onshore and offshore realms. As for the onshore, we discuss case studies dealing with recent high-resolution works based on: a) direct push in situ sensing techniques, applied to identification and characterization of typical paleotsunami deposits features; b) combined XRF- X-CT approach, implemented for the identification of fine-scale sedimentary structures useful for the definition of the causative flow dynamics; c) the geoarchaeological “new field” contribution, with the development of specific diagnostic criteria in search for tsunami impact traces in archaeological strata; d) comparison of multiple dating methods and of different modeling codes for the definition of the potential source for the displacement of boulders of exceptional dimension, identified by 3D size calculation. As for the offshore advancements, we present case studies focusing on the recognition of tsunami deposits and their sedimentary traces in the geological record from the nearshore, thanks to diver-operated coring equipment, down to the continental slope, by means of vibracorer and long gravity core sampling in deeper areas. The examples provided show a multiproxy approach with a high potential of retrieving a complete record of paleotsunami traces at least during the Holocene. This is based on the combination of multidisciplinary approaches including X-ray imaging, high-resolution measurement of physical properties, X- ray fluorescence data, grain-size analysis, micropaleontology, palynological content, isotopic and optically stimulated luminescence dating methods.200 29
- «
- 1 (current)
- 2
- 3
- »