Seismic crustal deformation in the Southern Apennines (Italy)

FRANCESCO VISINI (*)

ABSTRACT

With the aim of estimating the rates of seismic moment and deformation in seismic zones of southern Italy, constraints on tectonic style and kinematics data from geophysical and geologic data were integrated with the traditional constraints from seismicity catalogues. Seismotectonic considerations indicate that the region can be divided into four broad crustal seismogenic volumes, of relatively homogeneous deformation: an extensional crustal volume in the western part of the Southern Apennines and three crustal volumes characterized by a transcurrent regime in the eastern area.

For each crustal volume, the annual seismic moment release showing the rate of the deformation was estimated by integrating magnitude-frequency relations of historical earthquakes. The application of a Monte Carlo simulation systematically incorporated the uncertainties of the input parameters. The results show that the westernmost crustal volume is undergoing extension, with velocity of ~1.2 mm/a (along a nearly NE-SW direction), whereas the easternmost volumes are undergoing transcurrent deformation, with an along-strike deformation axis oriented along a nearly E-W direction, with velocities of ~1.2 mm/a and ~0.1 mm/a, respectively for the northern, central and southern volumes.

The errors affecting the estimate of the crustal deformation using the seismicity catalogues may be significant. The parameters with the largest contribution are the coefficients of the magnitude-moment relationship; the second and third contributors are the coefficients of the magnitude-frequency distribution and the maximum magnitude. Uncertainties in the geometries and kinematics parameters have slight, minor effects. Furthermore, the effects of the crustal model (and the consequent earthquake association) are of the same order as the uncertainties of the parameters involved in the computation. These results agree with recent GPS data and geological slip rates in terms of direction and rate of deformation.

KEY WORD: Seismotectonics, crustal deformation, active normal faulting, active strike-slip faulting, Southern Apennines of Italy.

INTRODUCTION

Knowledge of the velocity and strain tensors of seismogenic deformation and robust estimates of their uncertainties are essential for determining the seismic hazard of an active region, especially in an area with relatively low strain rates. Similarly, the comparison of seismic deformational rates with crustal deformational rates derived from geological and geodetic data has become a major aspect of seismic hazard studies (e.g. PERUZZA et alii, 2011). Geological data on the long-term deformation history (in the order of 10^4 a) may allow us to extend the history of slip of a seismogenic region, to a large number of earthquake cycles (e.g., PAPANIKOLAOU et alii, 2005; BULL et alii, 2006; NICOL et alii, 2006). Obviously, the completeness of geological strain rate depends on the availability of quantitative geological data for the study area. Geodetic strain takes into account the total value of the active deformation, but it is unable to discriminate the seismic components from the aseismic ones. Moreover, it is still unclear whether geodetic data, which covers about 10-20 years of measurements, can be extrapolated to longer time periods owing to the short instrumental record (PAPANIKOLAOU et alii, 2005; FAURE WALKER et alii, 2010).

The seismological approach represents a sort of intermediate approach, with the possibility of covering up to one thousand years. Moreover, the seismological approach remains highly interesting in areas where quantitative geological data are insufficient for detailed slip analysis.

In this paper, a comparison among deformation-rate estimates is presented, including the main uncertainties associated with evaluating the seismic moment, based on different crustal models. The aim is to provide a quantitative evaluation of the influences of the crustal models in terms of geometry, kinematics and consequently of the associated earthquakes on the evaluation of the seismic budget of active crustal deformation.

Southern Italy provides a good testing ground to carry out this comparison. It is one of the most seismically active regions of the central-western Mediterranean area, with earthquakes up to magnitude 7 (fig. 1). After the 1980 Irpinia earthquake, many studies were carried out to investigate the state of stress and the seismotectonic setting of the Southern Apennines. Stress analyses (MONTONE et alii, 2004) and seismologic/seismotectonic studies of the Irpinia, as well as other moderate and minor seismic sequences (COCCO et alii, 1999; FREPOLI & AMATO, 2000; CUCCI et alii, 2004), indicate prevailing dip-slip kinematics along NW-SE-striking active normal faults, with a sub-horizontal SW-NE-trending extensional direction. This seismicity lies at depths shallower than 15 km within the upper crust (e.g., WESTAWAY & JACKSON, 1987; BERNARD & ZOLLO, 1989; AMATO & SELVAGGI, 1993; COCCO et alii, 1999; CHIARABBA et alii, 2005a; BASILI et alii, 2008).

However, some moderate-magnitude earthquake sequences do not follow this trend. For instance, the 1990 (Mw = 5.7) and 1991 (Mw = 5.2) earthquakes in the Potenza area, only 40-50 km ESE of the Irpinia epicentral area, and the 2002 sequence (main event Mw = 5.7) NE of the Southern Apennines show a different pattern of active deformation. In fact, the focal mechanisms of these events (AZZARA et alii, 1993; EKSTROM, 1994; DI LUCCIO et alii, 2005b; PON-
Fig. 1.
Drelli et alii, 2006; Boncio et alii, 2007) indicate nearly pure strike-slip kinematics on E-W trending structures, significantly different from the Apennines extensional seismicity. The focal depths (between 15 and 25 km for the 1990-1991 seismic sequences and 10 to 25 km for the 2002 sequence) also provided evidence that in this part of the chain, toward the foreland of the former fold and thrust belt, NW-SE normal faulting gives way to E-W, right-lateral seismogenic faults (e.g., Di Luccio et alii, 2005a; Vallee & Di Luccio, 2005; Di Buccio et alii, 2007; Di Buccio et alii, 2010; Frepoli et alii, 2011).

Obviously, only the seismic part of the strain rate tensor is estimated from seismicity data. Its estimation depends strongly on the completeness of the seismicity catalogue. Although focal mechanisms and precise magnitudes have been available since 1970-1980, this time interval is too short to cover the recurrence time of most of the large earthquakes (e.g., Valensise & Pantosti, 2001). It is likely that the amplitude of seismic deformation based on instrumental seismicity is significantly lower than the real amplitude. Therefore, in this paper, the rates of deformation are evaluated using both instrumental and historical catalogues.

In order to estimate the seismic deformation in the Southern Apennines of Italy, seismic catalogues analyses, geophysical data and geological information were integrated.

Starting from the assumptions that the deformation of a region is represented by a characteristic tectonic style and that the magnitude-frequency distribution of earthquakes applies uniformly to the entire crustal volume, the relation between the seismic moment rate \(M_o \) and the amount of slip rate \(s \) is expressed as:

\[
M_o = \mu s A
\]

where \(\mu \) is the rigidity of crustal rocks, and \(A \) is the fault rupture area. From equation (1) the vertical (\(v \)), normal (\(n \)), and along-strike (\(s \)) components of the relative block motion, as illustrated in the inset of fig. 1, are:

\[
v = (\sin(rake)\sin^2(dip)M_o)/\mu L_1 L_3
\]
\[
n = (\sin(rake)\cos(dip)\sin(dip)M_o)/\mu L_1 L_3
\]
\[
s = (\cos(rake)\sin(dip)M_o)/\mu L_1 L_3
\]

where L1 and L3 are the length and seismogenic thickness of the crustal volume, respectively, and \(M_o \) is the rate of seismic moment release as estimated from earthquakes that occurred within the crustal volume in the years of the completeness interval.

The scalar seismic moment rate \(M_o \) can be calculated using Molnar's (1979) formula:

\[
\dot{M}_o = A \dot{M}_o^{max} \frac{1 - B}{1 - B}
\]

with:

\[
\dot{M}_o^{max} = 10^{c M_{max} + d}
\]
\[
A = 10^{a - (b c)}
\]
\[
B = \frac{b}{c}
\]

The parameters \(a \) and \(b \) are values of the Gutenberg-Richter (Gutenberg & Richter, 1944) relation (values and uncertainties calculated in this paper, see paragraph 2.4). \(c \) and \(d \) are constants of the moment-magnitude relation (1.5 and 9.1, Kanamori & Anderson, 1975), and \(\dot{M}_o^{max} \) is the scalar moment of the largest observed earthquake in the region. The advantage of this formula is that the full record of seismicity in any given region can be used.

The input data to calculate the seismic budget of active crustal deformation can be summarized as follows:

(i) Dimensions of the crustal seismogenic volumes, deduced from integrated geological-seismological constraints (paragraph 2.1);
(ii) Kinematics of the crustal seismogenic volumes, computed from reliable fault plane solutions (paragraph 2.2);
(iii) Earthquake dataset for each crustal volume (paragraph 2.3);
(iv) Magnitude-frequency distributions that will be used to calculate the seismic moment rates (paragraph 2.4).

Fig. 1 - Seismotectonic sketch of the Southern Apennines with locations of major active faults and historical seismicity. Major faults are from Pantosti & Valensise (1990); Cinti et alii (1997); Menardi Noogiera & Rea (2000); Maschio et alii (2005); and Boncio et alii (2007). Historical seismicity is from Working Group CPTI (2004). The region is divided into four broad crustal volumes (solid and dashed black lines show the dimensions of the crustal volumes used in this work). L1, L2 and L3 are the dimensions of the sources as reported in tab. 2. The left-lower inset shows the location of fig. 1 within the seismotectonics and the stress field of the Italian territory. The right-lower inset shows the relation between deformation of a seismic zone and characteristic fault parameters: slip vector, dip, and rake of slip along the fault; \(n, s, \) and \(v \) are the normal, along-strike, and vertical components, respectively, of relative block motion across the seismic zone associated with slip on the fault.
mean stress tensor solution and the 95% confidence limits for σ_1 and σ_3; redraw from Del Gaudio et alii, 2007

approximative limit between the extensional and the strike-slip/compressive stress regimes areas, from Barba et alii, 2010

Active strike-slip fault
Active normal fault
Front of Southern Apennine belt
SHmax from borehole breakouts

Focal mechanisms from Pardreli et alii, 2006
used for the average focal mechanism of the EXTCV
used for the average focal mechanism of the FORECVs

Strike-slip seismogenic sources from DISS (http://diss.rm.ingv.it/diss/)
number, strike(min-max), dip (min-max), rake (min-max)
(1), 250-270, 80-90, 180-220
(2), 269, 70, 230
(2), 277, 70, 230
(3), 260-280, 70-90, 170-190
(4), 270-290, 55-75, 230-250
(5), 260-280, 70-90, 170-190
(6), 80-100, 80-90, 170-190

Fig. 2.
solid black rectangles in figs. 1 and 2); for the second model a simplified 3D view was used, with overlapping volumes (hereinafter named "model B": solid + dashed black rectangles in figs. 1 and 2). To parameterise the dimensions (length L1, width L2, thickness L3) of each deforming seismogenic crustal volume, investigation was carried on the current tectonic style, integrating geologic data with the traditional constraints from instrumental seismicity catalogues and with other geophysical data.

Extensional Crustal Volume (EXCV)

As shown in figs. 1 and 2, many active faults are defined in the area of largest seismicity that is mostly concentrated in a narrow belt along the axis of the Apennines (e.g. Pantosti et alii, 1993; Benedetti et alii, 1998; Cello et alii, 2003; Maschio et alii, 2005; Basili et alii, 2008; Firepoli et alii, 2011). Generally, the seismicity of the last 30 years (Castello et alii, 2005; Firepoli et alii, 2011) shows hypocentres depths shallower than 15-20 km. The present day orientation of the active normal faults in the Apennines is mostly strike parallel to the mountain chain (Anderson & Jackson, 1987; Cinque et alii, 2000; Brozzetti, 2011), with a borehole break-out data and focal mechanisms (e.g. Montone et alii, 2004; Ponderelli et alii, 2006; Barba et alii, 2010).

Information on paleoseismicity and deformation rates can be also derived from paleoseismological investigations, for example on the Irpinia fault (Westaway & Jackson, 1987; Bernard & Zollo, 1989; Pantosti & Valensise, 1990; Porfido et alii, 2002). Trenching of the fault responsible for the 1980 earthquake supplied evidence for at least four of its predecessors occurring every 2000 years on average (Pantosti et alii, 1993). Subsequent trenching of a number of large faults, confirmed these findings and returned fundamental constraints on the frequency of large Apennine earthquakes (see Valensise & Ponderelli, 2001 and Galli et alii, 2008 for a review).

To take into account the pattern of major faults mapped in the area, the spatial concentration of the seismic events (fig. 1), normal fault plane solutions and borehole break-out data (fig. 2), here I used an extensional crustal volume with an along-strike extent (L1) of 275 km, a width (L2) of 75 km and a seismogenic thickness (L3) of 15 km (EXCV in tab. 2).

Foreland Crustal Volumes

Drawing from recent focal mechanism solutions (e.g. Ponderelli et alii, 2006; Del Gaudio et alii, 2007; Firepoli et alii, 2011), geodetic data (e.g. Serpelloni et alii, 2005; Ferranti et alii, 2008) and numerical simulation (e.g. Barba et alii, 2010), the extensional crustal volume in the western part of the Southern Apennines was separated from a transcurrent regime in the eastern area. Three crustal volumes located in the north, central and south of the Apulia foreland were described.

Foreland Crustal Volume North (FORECV-N)

According to Castello et alii (2005) and to the recent analysis of background seismicity performed by Firepoli et alii (2011), the hypocentral distribution of instrumental earthquakes shows a seismogenic thickness of about 20 km beneath the Apulia forelands. Furthermore, a detailed analysis of the instrumental seismicity located in the Gargano, carried out by Del Gaudio et alii (2007), showed some distinct clusters, mainly corresponding to a

| Table 1
| Hypocentral and fault plane parameters of the events with Mw≥4.0 occurring since 1977. Data from Ponderelli et alii (2006). |
|---|---|---|---|---|---|---|---|
| Longitude | Latitude | depth | strike | dip | rake | Mw | month | day | year |
| 16.21 | 39.3 | 15 | 14 | 43 | -78 | 4.4 | 2 | 20 | 1980 |
| 16.12 | 39.94 | 15 | 157 | 35 | -60 | 4.7 | 3 | 9 | 1980 |
| 15.85 | 40.46 | 18.4 | 119 | 38 | -112 | 4.8 | 5 | 14 | 1980 |
| 15.37 | 40.91 | 13.7 | 135 | 41 | -80 | 6.9 | 11 | 23 | 1980 |
| 15.26 | 40.89 | 20.2 | 131 | 29 | -110 | 5 | 11 | 24 | 1980 |
| 15.33 | 40.9 | 15 | 115 | 44 | -125 | 5 | 11 | 24 | 1980 |
| 15.4 | 40.65 | 15 | 129 | 26 | -65 | 5.4 | 11 | 25 | 1980 |
| 15.47 | 40.7 | 18.9 | 122 | 30 | -119 | 4.9 | 11 | 25 | 1980 |
| 15.48 | 40.74 | 19.3 | 148 | 36 | -76 | 4.8 | 12 | 3 | 1980 |
| 15.37 | 40.95 | 15 | 115 | 30 | -93 | 5.2 | 1 | 16 | 1981 |
| 14.6 | 41.05 | 15 | 254 | 46 | 157 | 4.9 | 2 | 14 | 1981 |
| 15.64 | 40.74 | 15 | 104 | 41 | -138 | 4.5 | 11 | 29 | 1981 |
| 15.36 | 40.81 | 17.8 | 158 | 48 | -45 | 4.7 | 8 | 15 | 1982 |
| 15.47 | 40.95 | 15 | 160 | 45 | -79 | 4.5 | 1 | 28 | 1987 |
| 16.01 | 40.08 | 16.4 | 148 | 30 | -86 | 4.7 | 1 | 8 | 1988 |
| 15.85 | 40.75 | 26 | 184 | 73 | -13 | 5.8 | 5 | 5 | 1990 |
| 15.81 | 40.75 | 15 | 282 | 83 | -173 | 4.8 | 5 | 5 | 1990 |
| 15.77 | 40.73 | 20 | 183 | 71 | -9 | 5.1 | 5 | 26 | 1991 |
| 14.3 | 42.43 | 15 | 89 | 29 | -138 | 4.2 | 7 | 16 | 1992 |
| 15.97 | 41.9 | 24 | 197 | 32 | 58 | 5.2 | 9 | 30 | 1995 |
| 15.49 | 40.76 | 21.5 | 123 | 30 | -110 | 4.9 | 4 | 3 | 1996 |
| 14.63 | 41.4 | 10 | 280 | 27 | -110 | 4.5 | 3 | 19 | 1997 |
| 15.98 | 40.03 | 15 | 139 | 29 | -83 | 5.6 | 9 | 9 | 1998 |
| 15.36 | 41.75 | 10 | 246 | 19 | -166 | 4.5 | 7 | 2 | 2001 |
| 15.58 | 40.69 | 15 | 340 | 49 | -52 | 4.4 | 4 | 18 | 2002 |
| 14.85 | 41.79 | 15 | 180 | 79 | 11 | 5.7 | 10 | 31 | 2002 |
| 14.88 | 41.73 | 15 | 171 | 66 | -5 | 5.7 | 11 | 1 | 2002 |
| 14.83 | 41.87 | 26 | 263 | 56 | -166 | 4.5 | 11 | 1 | 2002 |
| 14.77 | 41.66 | 20.9 | 72 | 80 | 171 | 4.6 | 11 | 12 | 2002 |
| 14.82 | 41.66 | 18.8 | 167 | 72 | -12 | 4.5 | 6 | 1 | 2003 |
| 14.85 | 41.64 | 15.6 | 187 | 53 | -6 | 4.5 | 12 | 30 | 2003 |

Fig. 2 - Map of Southern Apennines with locations of major active faults, focal mechanisms, borehole breakouts and seismogenic sources. Focal mechanisms of major instrumental earthquakes (Mw≥4.0) that occurred in the time interval 1977-2006 (black focal mechanisms associated with extensional tectonic regime; grey focal mechanisms associated with strike-slip tectonic regime) are from Ponderelli et alii (2006). Shmax orientations are from Barba et alii (2010). Key: (a) and (d) average focal mechanisms; (b) lower hemisphere stereographic projections of P and T axes of the black focal mechanisms mapped in the main frame of the figure; (c) lower hemisphere stereographic projections of striations and corrugations on fault planes from the centres of the faults in southern Italy, with the mean vector and 95% confidence cone, redrawn from Papanikolaou & Roberts (2007); (e) lower hemisphere stereographic projections of P and T axes of the grey focal mechanisms mapped in the main frame of the figure; (f) stress inversion results using all the focal mechanisms resolved in the Apulia region, redrawn from Del Gaudio et alii (2007), with the 95% confidence limits for α1 and α3.
few seismic sequences, with focal depths between 5 and 15 km. MILANO et alii (2005) showed that the Gargano seismogenicity is generated by E-W, right-lateral strike-slip faults and by NW-SE, normal to left-lateral second-order faults slipping in response to dominantly NW-SE shortening. The 31 October to 1 November 2002 Molise earthquake sequence, composed of two similarly large (Mw 5.8-5.7) and relatively deep (16-18 km) main shocks, showed the same pure right-lateral focal mechanism on E-W nodal planes (VALLEE & DI LUCCIO, 2005).

The Mattinata Fault is the most important fault and the only one outcropping of the E-W fault system cutting the northern foreland sector (Di BUCCI et alii, 2010). Mesostructural data, mainly from faults cutting Mesozoic limestones, show that the strongest structural imprint at the mesoscale is given by the left-lateral strike-slip kinematics, accompanied by secondary faults, a pull-apart basin and closely spaced dissolution-related cleavage (BILI, 2003). Field evidence, however, shows that the slip switched to right-lateral around the beginning of the Middle Pleistocene (PICCARDI, 1998, 2005; TONDI et alii, 2005). The possible continuation of this shear zone further to the west was first hypothesized by FINETTI (1982) and definitively confirmed by the 2002 Molise earthquakes (see Di BUCCI et alii, 2010 for a detailed seismotectonic analysis of the onshore and offshore Gargano fault system).

Moreover, the Database of Italian Seismogenic Sources (version 3.1.1, http://diss.rm.ingv.it/diss/) depicted an E-W trending seismogenic sources, showing a right-lateral kinematics, involving the full length of the Gargano Promontory (fig. 2).

Considering the epicentral distribution of the historical seismicity, the hypocentral distribution of instrumental seismicity and the geological data, here I used an E-W orientated transcurrent crustal volume with an along-strike extent (L1) of 170 km, a width (L2) of 44 km and a seismogenic thickness (L3) of 15 km (FOREV-N in tab. 2).

Foreland Crustal Volume Central (FORECV-C) and Foreland Crustal Volume South (FORECV-S)

Recently, for the central and southern part of the Apulia foreland, FREPOLI et alii (2011) highlighted the fact that the recent seismic activity is also present in the Matera
and Cerignola areas, with the focal mechanisms available for these sectors showing a NNW-SSE P-axis orientation. Moreover, within the extensional area of the Apennines, at least two seismic clusters, showing an E-W elongation, were recognised by Frepoli et alii (2011). One is located in the same area as the two Potentino sequences of 1990 and 1991 and shows hypocentral depths between 15 and 25 km. Directly to the south, the second cluster extends from the −10 km south of Potenza to −15 km south-west of Matera, with focal depths between 15 and 40 km. According to Boncio et alii (2007) and to Frepoli et alii (2011), this pattern suggests the presence of an overlap between the inner portion of the chain, characterized by extension, and the foreland area, where dextral strike-slip kinematics prevail.

Finally, the Database of Italian Seismogenic Sources (version 3.1.1, http://diss.rm.ingv.it/diss/) indicated five seismogenic sources, about E-W oriented, showing a right-lateral kinematics and a seismogenic depths ranging from 5 to 20 km, matching the shape of the two broad crustal volumes identified in this sector of the Apennines (fig. 2). Considering this complex seismotectonic setting for two crustal volumes undergoing strike-slip kinematics (FORECV-C and FORECV-S), a possible extension beneath the extensional area has been tested (dashed rectangles in fig. 2, model B). The dimensions of FORECV-C are: L1 = 110 km (L1 = 190 km for the model B), L2 = 44 km, L3 = 15 km; the dimensions of FORECV-S are L1 = 98 km (150 km for the model B), L2 = 19 km and L3 = 15 km (tab. 2).

Kinematics

Because the kinematics of each crustal volume is given in terms of rake and dip (eqs. 2-4), I computed an average focal mechanism through the application of a Linked Bingham Distribution (Allmendinger, 2001) procedure, which is the equivalent of an unweighted moment tensor summation. All focal mechanisms available in the literature were selected for the events with moment magnitudes Mw >4.0 that occurred in the time interval 1977-2006 within the four crustal volumes (fig. 2; tab. 1, dataset from Pondrelli et alii, 2006). An average focal mechanism for the EXTCV was computed together with a second focal mechanism common to FORECV-N, FORECV-C and FORECV-S.

In the EXTCV, prevailing normal to normal-oblique kinematics characterise the 1980 seismic sequence and many other events. In fig. 2, the focal solutions used to compute the average focal mechanisms are identified by black quadrants. The computed average focal mechanism is shown in fig. 2a.

In the FORECV-N, FORECV-C and FORECV-S, prevailing strike-slip solutions are typical of the 2002 and 1990-1991 sequences and of the remaining selected events. In fig. 2, the events used to compute the average focal mechanism shown in fig. 2d, are identified by grey quadrants.

The main consequence of such a procedure is the assumption of recent focal mechanisms for historical earthquakes by means of recent focal mechanisms. This choice, however, is certainly corroborated by the matching between the recent deformation axes of focal solutions and slip vectors measured on fault planes (fig. 2).

In the extensional area of the southern Apennines, Papankolao & Roberts (2007) collected a huge database of slip vectors on the main active faults of the Southern Apennines and calculated the mean fault slip direction and hence the kinematics for the active fault array. Their calculated mean fault slip direction for the active fault array is ~70° plunging towards ~230°. This is consistent with the NE-SW O3 orientation of the active stress field (Montone et alii, 2004) and with the T axis of the average focal mechanism computed in this work (fig. 2). Moreover, the direction computed by Papankolao & Roberts (2007) is about 90° to the fault strikes in the region (NW-SE), so the faulting is almost pure dip slip and therefore agrees with the average focal solution in fig. 2. As the data collected by Papankolao & Roberts (2007) are on fault scarps younger than 18 ka, there is no evidence for kinematic changes between the 18-ka and the current strain field.

In the foreland area, geomorphic and structural data collected by Tondi et alii (2005) on the Mattinata fault showed evidence of right-lateral motion and also suggested that dextral shear characterizes the most recent kinematic behaviour of the structure. As discussed by Tondi et alii (2005), earlier left-lateral motion along the Mattinata fault has been inferred mainly from the occurrence of localized, pervasive pressure-solution surfaces, that are consistent with left shear and by the presence of a pull-apart basin, located in a left-stepping overlap zone between two major fault segments of the Mattinata fault. The same authors indicated that the geometry of the stress field currently acting in the area is characterized by a O1 axis oriented roughly NW-SE and by a O3 axis trending NE-SW. All these results agree with the current state of stress defined by Montone et alii (2004) and with the results of the analysis of Del Gaudio et alii (2007) of focal mechanism data (fig. 2), which established that the seismogenic structures responsible for major earthquakes in the foreland sector of northern Apulia should be sought among transpressive faults with an approximately E-W strike, characterised by dextral movement.

Earthquake dataset

A qualitative seismotectonic analysis for each crustal volume was carried out in order to attribute the historical earthquakes to each crustal volume and characterize the historical events with focal depth and kinematics.

Major seismicity in Southern Peninsular Italy, characterized by magnitudes reaching values of 7, is related to seismogenic faults (Valensi e & Pantosti, 2001, and references therein) in an extensional stress field characterized by SW-NE-oriented Shmin-axes (Montone et alii, 2004; Barba et alii, 2010). Instrumental data show that this seismicity occurs mainly in the first 15 km of the crust (Chiarabba et alii, 2005a). However, some instrumental earthquakes east of this narrow extensional area have hypocentral depths >15 km and strike-slip kinematics. Boncio et alii (2007) pointed out that these pieces of seismic evidence are consistent with a crustal mechanical zoning of the Southern Apennines. The authors suggested that (i) the Apennine crust, from the Irpinia seismic zone to the southwest, is characterized by an extensional tectonic regime in the brittle upper crust (up to 15 km depth) overlying a ductile middle and lower crust; (ii) the Apulian foreland is characterized by a thick (>20 km), brittle seismogenic crust, including the sedimentary cover and part of the middle crust, which overlies a ductile lower crust; and (iii) the zones where the Apennines units overthrust the Apulian crust and where strike-slip seismicity is within the buried foreland are characterized by a complex rheology, with two brittle layers at different depths.
Table 3

Dataset of historical earthquakes with moment magnitude \(\geq 4.5 \) used in this work, whose epicentres are located within the studied area and associated with the four crustal volumes in the model B. Dataset from historical parametric catalogue "Working Group CPTI" (2004). The events marked with an asterisk in the column "year", located in the extensional crustal volume (model A), were associated with a transcurrent crustal volume in model B. Moment magnitude uncertainties from "Working Group CPTI" (2004) and Jenny et al. (2006) are also shown.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>Name</th>
<th>Volume</th>
<th>LAT</th>
<th>LON</th>
<th>Mw from CPTI</th>
<th>Mw from Jenny et al. (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946</td>
<td>8</td>
<td>8</td>
<td>campanogamone</td>
<td>ETCV</td>
<td>40.53</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>11</td>
<td>2</td>
<td>cagnano</td>
<td>FORECV-N</td>
<td>41.017</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>14</td>
<td>14</td>
<td>basilicata</td>
<td>ETCV</td>
<td>40.26</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>4</td>
<td>2</td>
<td>melfi</td>
<td>FORECV-C</td>
<td>41.5</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>12</td>
<td>9</td>
<td>s.severo</td>
<td>FORECV-N</td>
<td>41.667</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>4</td>
<td>9</td>
<td>irpina</td>
<td>ETCV</td>
<td>40.82</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>6</td>
<td>9</td>
<td>savigliano puglia</td>
<td>ETCV</td>
<td>41.233</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>12</td>
<td>16</td>
<td>basilicata</td>
<td>ETCV</td>
<td>40.35</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>8</td>
<td>6</td>
<td>riccigiano</td>
<td>ETCV</td>
<td>40.75</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>2</td>
<td>4</td>
<td>vebi</td>
<td>ETCV</td>
<td>40.65</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>11</td>
<td>19</td>
<td>potenza</td>
<td>ETCV</td>
<td>40.33</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>4</td>
<td>6</td>
<td>s.salvatore</td>
<td>FORECV-N</td>
<td>41.667</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>12</td>
<td>28</td>
<td>oppia ferrata</td>
<td>FORECV-N</td>
<td>41.833</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>3</td>
<td>31</td>
<td>s.giovanni</td>
<td>FORECV-C</td>
<td>41.717</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>1</td>
<td>tore miletto</td>
<td>ETCV</td>
<td>41.517</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>12</td>
<td>13</td>
<td>venafro</td>
<td>ETCV</td>
<td>41.417</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>12</td>
<td>6</td>
<td>s.marco in lamis</td>
<td>ETCV</td>
<td>41.689</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>15</td>
<td>5</td>
<td>monti del marese</td>
<td>ETCV</td>
<td>41.55</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>17</td>
<td>9</td>
<td>benevento</td>
<td>ETCV</td>
<td>41.133</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>41.453</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>12</td>
<td>8</td>
<td>apricena</td>
<td>ETCV</td>
<td>41.833</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>2</td>
<td>14</td>
<td>basilicata</td>
<td>ETCV</td>
<td>41.667</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>2</td>
<td>25</td>
<td>salerno</td>
<td>ETCV</td>
<td>41.758</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>6</td>
<td>6</td>
<td>tremoli</td>
<td>ETCV</td>
<td>41.256</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>1</td>
<td>21</td>
<td>montesarchio</td>
<td>ETCV</td>
<td>41.017</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>7</td>
<td>19</td>
<td>briaenza</td>
<td>ETCV</td>
<td>40.417</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>14</td>
<td>7</td>
<td>monte s.angelo</td>
<td>ETCV</td>
<td>41.733</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>3</td>
<td>29</td>
<td>venafro</td>
<td>ETCV</td>
<td>41.5</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>11</td>
<td>24</td>
<td>monte calvo</td>
<td>ETCV</td>
<td>41.233</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>16</td>
<td>16</td>
<td>basilicata</td>
<td>ETCV</td>
<td>41.143</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>12</td>
<td>polla</td>
<td>ETCV</td>
<td>40.555</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>12</td>
<td>23</td>
<td>basso adriatico</td>
<td>ETCV</td>
<td>41.917</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>7</td>
<td>20</td>
<td>mignano</td>
<td>ETCV</td>
<td>41.383</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>12</td>
<td>16</td>
<td>montesarchio</td>
<td>ETCV</td>
<td>41.033</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>4</td>
<td>4</td>
<td>valle caudina</td>
<td>ETCV</td>
<td>41.034</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>12</td>
<td>7</td>
<td>benevento</td>
<td>ETCV</td>
<td>41.17</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>4</td>
<td>8</td>
<td>gargo sledi</td>
<td>ETCV</td>
<td>41.706</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>6</td>
<td>6</td>
<td>venafro</td>
<td>ETCV</td>
<td>41.467</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>7</td>
<td>17</td>
<td>aple</td>
<td>ETCV</td>
<td>41.11</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>3</td>
<td>14</td>
<td>beneventano</td>
<td>ETCV</td>
<td>40.951</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>6</td>
<td>29</td>
<td>briaenza</td>
<td>ETCV</td>
<td>40.525</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>11</td>
<td>26</td>
<td>briaenza</td>
<td>ETCV</td>
<td>41.759</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>11</td>
<td>25</td>
<td>irpina</td>
<td>ETCV</td>
<td>41.134</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>25</td>
<td>bagnoli</td>
<td>ETCV</td>
<td>40.833</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>2</td>
<td>montemurro</td>
<td>ETCV</td>
<td>40.3</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>7</td>
<td>2</td>
<td>montemurro</td>
<td>ETCV</td>
<td>41.864</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>12</td>
<td>18</td>
<td>solota</td>
<td>ETCV</td>
<td>40.8</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>3</td>
<td>26</td>
<td>miglionico</td>
<td>FORECV-S</td>
<td>40.517</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>12</td>
<td>3</td>
<td>castelgrand</td>
<td>ETCV</td>
<td>40.833</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>5</td>
<td>28</td>
<td>s.martino</td>
<td>ETCV</td>
<td>40.2</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>10</td>
<td>6</td>
<td>irpina-basilicata</td>
<td>ETCV</td>
<td>40.9</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>10</td>
<td>3</td>
<td>montemurro</td>
<td>ETCV</td>
<td>40.283</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>13</td>
<td>8</td>
<td>mercato s.severino</td>
<td>ETCV</td>
<td>41.383</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>7</td>
<td>2</td>
<td>tremoli</td>
<td>ETCV</td>
<td>41.143</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>7</td>
<td>27</td>
<td>lioni</td>
<td>ETCV</td>
<td>40.883</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>10</td>
<td>3</td>
<td>matusse</td>
<td>ETCV</td>
<td>41.513</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>12</td>
<td>19</td>
<td>s.agapito</td>
<td>ETCV</td>
<td>41.583</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>16</td>
<td>4</td>
<td>venafro</td>
<td>ETCV</td>
<td>41.045</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>17</td>
<td>13</td>
<td>castelanoscano</td>
<td>ETCV</td>
<td>40.231</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>19</td>
<td>10</td>
<td>gargo sledi</td>
<td>FORECV-N</td>
<td>41.671</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>3</td>
<td>7</td>
<td>sant'illario</td>
<td>ETCV</td>
<td>40.8</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>2</td>
<td>8</td>
<td>castelanoscano</td>
<td>ETCV</td>
<td>41.4</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>12</td>
<td>11</td>
<td>muro lucano</td>
<td>ETCV</td>
<td>40.677</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2</td>
<td>26</td>
<td>cerignola</td>
<td>FORECV-C</td>
<td>41.898</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>25</td>
<td>8</td>
<td>gargo sledi</td>
<td>FORECV-N</td>
<td>41.882</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>12</td>
<td>17</td>
<td>deliceto</td>
<td>ETCV</td>
<td>41.222</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>30</td>
<td>17</td>
<td>salernitano</td>
<td>ETCV</td>
<td>40.769</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue tab. 3
Obviously, assigning the depths of historical earthquakes is highly uncertain, as many authors have mentioned, and the limits of the most common methods are well known (KOVESLYETHY, 1907; BLAKE, 1941; SPONHEUER, 1960; SHEBALIN, 1973; CECIC et alii, 1996; GASPERINI et alii, 1999; GASPERINI et alii, 2010). A significant accuracy of earthquake parameters has only been possible over the last few years, thanks to the increasing number of seismic networks installed all over the world, but in regions characterised by moderate strain rate (about 10^{-9} sec^{-1}), damaging earthquakes (Mw>6) occur with recurrence times longer than hundreds of years. The possibility to retrieve source parameters from the macroseismic fields is crucial in studies of regional seismicity because it allows one to trace the parametric earthquake catalogues back in time, but the common approaches require a considerable amount of subjective judgment.

Recently, GASPERINI et alii (2010) developed a new method that uses intensity data and associated uncertainties by maximizing the likelihood function of an attenuation equation with observed intensity data to assess the surface (epicentral) and hypocentral (macroseismic depth) location, the physical dimensions and the orientation of the source of historical earthquakes. However, the same authors, testing the method by comparison with reliable instrumental events, showed that the computed macroseismic depths generally underestimate the observations. This result implies that the macroseismic depth inferred by algorithms should still be treated with caution.

Consequently, information about a likely depth range of each event, when no instrumental data are available, has been only qualitatively inferred from the macroseismic field integrated with all available information from the literature. The aim of the following considerations is to determine whether some historical earthquakes traditionally assigned to the extensional belt (i.e., a shallow source) could have a deeper and strike-slip slip. Based on this, each historical earthquake was assigned to a specific crustal volume (tab. 3). In tab. 3 an asterisk marks the events with a debated source that are discussed below.

The 1456 earthquakes (fig. 3a)

The 1456 earthquake sequence is the most important in this group of catastrophic events, and its causative source is still debated. The damage area that underwent intensity >VIII effects on the Mercalli-Cancani-Sieberg (MCS) scale of the 1456 sequence is very large (MAGRi & MOLiN, 1979; MELETTi et alii, 1988; FRACCASi & VALENSiSE, 2007), extending from central Italy (to the north) to Apulia (in southeastern Italy) and from the Adriatic to the Tyrrhenian coasts. According to the historical catalogue (WORKiNG GROUP CPTi, 2004), the 1456 seismic crisis consists of at least two well-constrained and similarly large mainshocks, the first on 5 December and the second on 30 December (MAGRi & MOLiN, 1979; MELETTi et alii, 1988; BOSCHi et alii, 2000; GUIDOBOi & FERRARI, 2004; GUIDOBOi & COMASTRI, 2005). In the literature, different sources have been proposed for locating the earthquake (see FRACCASi & VALENSiSE, 2007 for an exhaustive analysis of the event). Among several others, SELLA et alii (1988) and SAWYER (2001) proposed a complex southwest-dipping normal-fault system, NW-SE trending, that displaced the Apulian platform beneath the Apennine wedge as a causative source. Recently, FRACCASi & VALENSiSE (2007) suggested that
these multiple events were generated and/or controlled by the oblique right-lateral reactivation of discrete segments of regional deeper (between roughly 10 and 25 km), E-W seismogenic faults. Concerning the kinematics, FRACASSI & VALENSISE (2007) hypothesized that one of the 1456 sources forms the westernmost part of an E-W seismogenic shear zone extending from the Apulia foreland to the Apennines. In accordance with FRACASSI & VALENSISE (2007), the 1456 earthquake sequence was associated with EW strike-slip sources of the foreland crustal volume.

The 1990 Potenza seismic sequence (fig. 3b)

The 1930 Irpinia earthquake

The early instrumental 1930 earthquake occurred a few tens of kilometres to the north of the epicentral area of the 1980 Irpinia earthquake and has been recently studied by PINO et alii (2008), who performed a waveform modeling of historical seismograms of this earthquake. Their results indicate that the 1930 event nucleated at ~14 km depth and ruptured a north-dipping, N100°E-striking plane with an oblique motion.

Therefore, even if this earthquake is located within the extensional area of the Southern Apennines, it shows seismotectonic features compatible with the foreland tectonics setting. Then, to estimate the influence of the 1930 and 1990 earthquakes in terms of deformation rates, in model A they were assigned to the extensional crustal volume, and in model B to the foreland crustal volume, following their inferred hypocentral depths.

ESTIMATION OF THE MAGNITUDE-FREQUENCY DISTRIBUTION

The seismicity catalogues provide estimates of short-term (Catalogo della Sismicità Italiana, CASTELLO et alii, 2005, about 20 years) and relatively long-term (historical catalogue, Catalogo parametrico dei Terremoti Italiani, WORKING GROUP CPTI, 2004, about 1000 years) seismic-moment rates. To accurately estimate the seismic budget of active crustal deformation, the historical WORKING GROUP CPTI (2004) catalogue was used and the cumulative GUTENBERG-RICHTER (1944) magnitude-frequency distribution was calculated (hereinafter, GR) expressed as logN(M) = a-bM, where N is the cumulative frequency of earthquakes with magnitudes larger than M per year, a is the recurrence rate of the smallest events and b represents the slope of the curve (slopes in fig. 4). Magnitude-frequency distributions are determined for each crustal volume and for models A and B, as previously defined, taking into account uncertainties of the completeness interval and magnitude errors. Statistical analysis of the historical catalogue (PACE et alii, 2006) suggested that the catalogue is complete for Mw>5.5 from 1600 A.D. and for Mw>6.4 from 1000 A.D. However, JENNY et alii (2006) discussed how the historical dataset does not allow an unequivocal assessment of the completeness interval and that the best estimates of the seismic deformation for Southern Italy use a shorter completeness interval. Some preliminary tests of the moment rate estimation in the extensional crustal volume, using the two completeness intervals and the errors involved in the magnitude estima-
tion, as proposed by the Pace et alii (2006) and Jenny et alii (2006), have shown a sensible difference. The use of completeness intervals proposed by Jenny et alii (2006) returns the highest value of the moment rate, about 30×10^{16} \text{Nm}^{-1}, whereas the use of completeness intervals as proposed by Pace et alii (2006) returns a value of about 7×10^{16} \text{Nm}^{-1}. Therefore, following Jenny et alii (2006), a completeness interval was assigned starting from 1000 A.D±200 to the events with M≥7.0, 1475±125 to the earthquakes with 6.5≤M<7, 1625±100 to the earthquakes with 5.5≤M<6.5, 1780±80 to the earthquakes with 5.5≤M<6, 1870±40 to the earthquakes with 5.0≤M<5.5 and 1885±20 to the earthquakes with 4.5≤M<5.

To evaluate the influence of the uncertainty in the earthquake-crustal volume assignment in GR parameters and consequently in the deformation rates, the following computational tests were performed, varying the volumes and the earthquakes associated with them.

Model A: starting from the historical earthquake dataset (fig. 1), on the basis of a plan view, I divided the earthquakes that occurred in the extensional (EXTCV) or in the foreland (FORECV-N, FORECV-C and FORECV-S) crustal volumes, respectively (GR a, c, d and f in fig. 4). Model B: I moved those events that, even if located in the EXTCV, were associated with strike-slip tectonics in the underlying crust and discussed in Section 4.3. In particular, in Model B, I associated with the FORECV-C the two 1456 December shocks and with the FORECV-S the 1990 and 1930 earthquakes (GR b, e and g in fig. 4).

Successively, using a Monte Carlo simulation method (described in the Section 3), with errors in the magnitude estimation and completeness intervals, I estimated the standard deviations of the GR slopes by simulating 10,000 catalogues for each of the four crustal volumes and for each of the earthquake-source association models, for a total of 7 simulations (fig. 4). Grey areas drawn above the slopes in fig. 4 graphically represent the computed ranges of uncertainties.

Finally, the integration of these distributions returns a moment-rate estimate that provides a slip rate by using equations (1)-(4).

COMPUTATIONAL STEPS

The rates of seismic moment released for each crustal volume and the components of the slip rate vector were estimated by using equations (1)-(8). The errors that can affect the calculation of the seismic moment rate were in the estimation of the Gutenberg-Richter parameters, in the assumptions of the coefficients of the Kanamori & Anderson (1975) relationship and in the maximum magnitude evaluation. Moreover, in the computation of the slip rate the errors in the value of the shear modulus, in the estimation of the length and seismic thickness and in the definition of the kinematics also have to be taken into account.

The seismic moment rate is, in fact, constrained by five parameters (Eqs. 5-8): a and b (coefficients of the magnitude-frequency distribution of earthquakes), c and d (coefficients of the magnitude-moment relationship) and M_{max} (maximum magnitude); the slip rate required five extra parameters (equations (1)-(4)): dip and rake (focal mechanism), \(\mu \) (shear modulus), L1 (length of the crustal volume) and L3 (seismic thickness). According to Mazzoti & Adams (2005), three main classes can be used to group these parameters: (1) the uncertainty is aleatory and derived from a formal fit to a data set (can be described by a standard deviation about a mean); belonging to this class are the a and b Gutenberg-Richter coefficients and dip and rake of the assumed average focal mechanism; (2) the uncertainty is aleatory, derived from data analysis, but also involves some degree of subjectivity in its definition; this class includes the maximum magnitude of each crustal volume (M_{max}), to which I assigned the error given in Jenny et alii (2006), the length of the seismic zone (L1, measured by GIS software) and the shear modulus (\(\mu \), 3.0×10^{10} \text{Pa} based on a typical range for crustal rocks, Turcotte & Schubert, 2002), to both of which I assigned a 10% uncertainty, and the magnitude-moment relationship parameters (c and d), to which I assigned a value of 0.1 of uncertainty; (3) the uncer-

Fig. 4 - Gutenberg-Richter slopes based on the earthquakes listed in tab. 1, with exclusion of the events from the interval of catalogue completeness. For each crustal volume (except the FORECV-N), the two different GR slopes were referred to the models (model A and B) discussed in the text. The grey areas represent the uncertainty range owing to the errors associated with magnitudes and completeness length of the catalogues, as calculated in this work.
Uncertainty is epistemic, mostly due to a lack of knowledge of the underlying process (to which I assigned a conservative 30% of uncertainty); to this class belongs the seismic thickness (L3) because of the lack of systematic studies on the definition of the average seismic thickness and relative errors, at least in this sector of the Apennines.

Once the mean values of all the parameters and their ranges of variability are defined, the uncertainties in the values of the seismic moment rates and observed velocities for each crustal volume are estimated by applying a Monte Carlo simulation method. Assuming random errors in these parameters, with known medians and
standard deviations, Gaussian deviates can be introduced. If \(m \) is the vector of mean values of the parameters, the new vector \(P = (a, b, c, d, M_{\text{max}}, \mu, L_1, L_3, \text{dip, rake}) \) can be iteratively obtained using:

\[
P = Cz + m
\]

(9)

where \(z \) is the standard Gaussian random vector, with deviates produced using the polar Box-Mueller transform, and \(C \) is the Cholesky decomposition of the covariance matrix of the parameter vector \(V \) (symmetric and positive definite matrix), with a unique lower triangular matrix such that \(V = C \times CT \).

Where the \(V \) diagonal elements are the \(\sigma^2 \) of each parameter.

Because some of the parameters used are correlated, the covariance matrix, \(V \), is non-diagonal, and it is necessary to compute the covariance's \(\sigma_{ab} \) and \(\sigma_{cd} \) considering the calculated correlation coefficient, \(r_{ab} \), and assuming \(r_{cd} \) is equal to 0.95, as proposed by Papazachos & Kiratzi (1992). Using equation (9), the new parameters can be obtained in each iteration to estimate the new value of \(M_0 \) and the corresponding slip rate. This set of values can be used to obtain the mean and standard deviation.

Table 2 and fig. 5 summarize the input parameters and the results of such analysis.

RESULTS

The results in the deformational pattern obtained for each model are shown in tab. 2. In particular, in tab. 2, the G-R parameters, \(M_0 \), and velocities as computed by eqs (2-4) are given in terms of mean values and standard deviations. Moreover, for a meaningful representation of the velocity field, the highest components of the slip rate vectors are synthetically illustrated in fig. 5. Principal results of the computed deformational pattern for each model are given below.

Regarding the EXTCV, the calculated crustal extensional rate along a NE-SW direction (normal component of the slip rate vector) for the models A and B are 1.21±0.55 mm/a and 1.12±0.51 mm/a, respectively.

In the FORECV-N, the along-strike component of the slip rate vector is 0.96±0.54 mm/a. Considering the available seismotectonic data, I did not define a model B for this crustal volume.

Regarding the FORECV-C, the calculated main deformation rate is 0.56±0.28 mm/a for the model A. Using the model B, an increasing value in the L1 dimension, combined with the increased maximum magnitude occurred within the volume, allowed an along strike deformational axis of 1.23±0.64 mm/a to be estimated.

In the FORECV-S, the along-strike deformational axis for the model A is 0.3±0.1 mm/a. This value was obtained after fixing b to be equal to 1.0 with an uncertainty of 0.1. This was necessary because the limited range of magnitude of the earthquakes that occurred within this crustal volume did not allow any significant statistics. For this crustal volume, the model B is particularly important regarding the L1 dimension, as well as the possibility of expanding the magnitude range of the events located within the FORECV-S. The computed along strike deformational axis, using the model B, is 0.11±0.05 mm/a.

DISCUSSION

Effects of the input data

The results show that the rates of the seismic deformation are influenced by the variations in shape, dimension and associated earthquakes of the crustal volume undergoing deformation. To illustrate this influence, I computed the coefficients of the GR relationship, the seismic moment rate and the rates of deformation in the Southern Apennines of Italy. The results contain the uncertainty and errors associated with the entered data, especially with catalogue completeness and quality, focal mechanism dataset, size and shape of the seismogenic volume.

By analyzing the effect of each parameter and the influence of the earthquake association with the crustal volume to the final uncertainty, it is possible to highlight some targets for future improvement of the seismic deformation estimates. Fig. 6 shows such analysis for the Southern Apennines crustal volumes. For each of the input parameters, I varied the values between the standard deviation while the other parameters were fixed to the mean value (the procedure is the same as described in section 3 but uses a simplified vector of the parameters containing only the investigated parameter). Starting from model A, I calculated upper and lower slip rates in order to indicate the contribution of each parameter to the final uncertainty estimates and evaluate the weight of each of them in the sum of variances uncertainty. As shown on fig. 6, the parameters with the largest contribution are the coefficients of the magnitude-moment conversion (c and d). The uncertainty of the c and d coefficients can contribute, alone, an error of 34-37% in the
final values and represents the main source of error, with weights in the range of a 40 to 49% contribution to the total error.

The impact of this parameter is almost twice as large as that of the second and third contributors, magnitude-frequency \((a \text{ and } b) \) and maximum magnitude \(M_{\text{max}} \). The magnitude-frequency coefficients, which themselves bring errors and uncertainties in the historical catalogues, can contribute to an error of 13 to 24% and weight from 17 to 28% in the overall source of uncertainty. The maximum magnitude leads to a 13% uncertainty in the final values, and weights of a maximum of 18% in the sum of the variances uncertainty.

Geometrical and kinematics parameters \((L_1 \text{ and } L_3, \text{ dip and rake})\), as well as the rheological parameter \(g\), have minor effects. Together, they are able to contribute a maximum of 13% to the final uncertainty and account for 15-17% of the sum of each variable.

Moreover, these errors could be sensibly reduced by improving seismological and rheological studies as well as the quality of records of the minor seismicity of the instrumental earthquake catalogues. Conversely, because of the long recurrence time of large events, improvements to the Kanamori and Anderson relation are more likely to come from theoretical studies \(\text{(e.g., Atkinson & Boore, 1987)}\) rather than from a significant increase in the number of events defining the empirical relation. According to Mazzotti & Adams \(\text{(2005)}\), the uncertainty contributions from \(a\) and \(b\) and the maximum magnitude \(M_{\text{max}}\) are related to the understanding of the physical processes controlling the magnitude distribution of large events in intraplate regions, but I stress that also the quality, in terms of magnitude estimation and completeness, of the earthquake catalogues plays an important role, as discussed in section 2.4.

Furthermore, the effect of the crustal-model geometry definition on the evaluation of the seismic budget of active crustal deformation has an influence at least comparable to the parameter uncertainties, as is evident from the difference in the values of the models A and B shown in fig. 6. Even if the EXTCV shows a quite stable result after moving some historical events, the FORECV-C returns an about double value in model B in respect to model A. This implies that accurate seismotectonic studies and quantitative parameter estimation of historical earthquakes need to be taken into account for computing active crustal deformation.

Seismotectonic Considerations

As shown in fig. 1, most of the recent seismicity is concentrated in a narrow belt along the core of the Apennines, as are most of the historical sources, which appear to be associated with NW-SE-trending normal faults. The results of this work reinforced and confirmed the existence, in the Southern Apennines, of high extensional values of crustal deformation \(\text{(e.g., Westaway, 1992; Selvaggi, 1998; Jenny et alii, 2006)}\). For this region, previous investigators have calculated the rate of extension on the basis of moment-tensor summation. Among others, Westaway \(\text{(1992)}\) evaluated extensional rates up to 5 mm/a, whereas Selvaggi \(\text{(1998)}\) and Jenny et alii \(\text{(2006)}\) computed extensional rates of about 1.6 mm/a and 2 mm/a, respectively. Moreover, Jenny et alii \(\text{(2006)}\), using geodetic data, computed extensional rates of \(-3\) mm/a. Assuming a direction of maximum extension about a NE-SW orientation, values of about 1 mm/a have been computed in the present work.

Moreover, in this work, a more complex tectonic model was taken into account, with four crustal volumes characterized by two different kinematic styles. In fact, given the availability of recent focal mechanism solutions \(\text{(e.g. Pondrelli et alii, 2006; Del Gaudio et alii, 2007)}\) and new geodetic \(\text{(e.g. Serpelloni et alii, 2005; Devoti et alii, 2008; Ferranti et alii, 2011)}\) and numerical simulation \(\text{(e.g. Barba et alii, 2010)}\) data, a discriminated between an extensional crustal volume in the western part of the Southern Apennines and a transcurrent regime in the eastern area was applied.

Other studies based on permanent and temporary GPS measurements show that the velocity field in southern Italy is consistent with the described tectonic setting \(\text{(e.g. Serpelloni et alii, 2005; Devoti et alii, 2008; Caporali et alii, 2011)}\). In general, active strain rates computed across the extensional area of the Southern Apennines through the analysis of geodetic data \(\text{(Serpelloni et alii, 2005; Jenny et alii, 2006; Devoti et alii, 2008; Ferranti et alii, 2011; and geological data (Papanikolaou & Roberts, 2007)}\) indicate velocities that are, on average, of the same order of magnitude as those obtained from seismic data. On the contrary, geodetic strain rates computed across the foreland of the Southern Italy excess the seismic and geologic rates \(\text{(Tondi et alii, 2005)}\). In addition to geometrical problems and short time-series of geodetic data, the partial seismic deficit, following D’Agostino et alii \(\text{(2008)}\), could be resolved considering that \((i)\) a large part of the total deformation is expressed aseismically, or \((ii)\) seismic deformation could be driven by small-scale tectonic processes \(\text{(Selvaggi, 1998; Papanikolaou et alii, 2005)}\). Finally, the possibility of a large amount of seismic release in the near future cannot be ruled out.

In fig. 5 the velocity vectors computed by Serpelloni et alii \(\text{(2005)}\) indicate an extensional velocity of \(-1.8\) mm/a along the axis of the belt in an ENW-SWSW direction, but a similar velocity field is computed for the Gargano area along a mean NE-SW direction.

Devoti et alii \(\text{(2008)}\) presented a velocity field of the Italian area derived from continuous GPS observations from 2003 to 2007. Although the aim of Devoti et alii \(\text{(2008)}\) paper was to provide further constraints on the kinematics of the Apennines subduction, useful data on the velocity of extension along the Apennines can be extracted. Devoti et alii \(\text{(2008)}\) described that the extension smoothly starts near the north-eastern margin of the Tyrrenian Sea, reaching a maximum of about 2 mm/yr. Southernmost, crossing the Tyrrenian Sea and the central and southern Apennines, the extension reaches its maximum value, about 3-4 mm/yr.

Recently, Caporali et alii \(\text{(2011)}\), basing on about one hundred of permanent GPS stations, computed a new strain field for the Italian territory. By using a weighted summation over the local velocity data, Caporali et alii \(\text{(2011)}\) obtained the geodetic shear strain rate for several area corresponding to the seismogenic zones (ZS) of the Working Group MPS \(\text{(2004)}\). Applying the Savage & Simpson \(\text{(1997)}\) relationship, slip rates were estimated in four of the ZS studied by Caporali et alii \(\text{(2011)}\), roughly coinciding with the four crustal volumes. In the extensional area ZS 927 (for details see tab. 1 in Caporali et
alii, 2011), using the same kinematics of the EXTCV and by means of eq. (3), a slip rate was estimated of about 1
mm/a, which is very close to the seismic velocity obtained
for the EXTCV. Conversely, the velocity along strike
obtained for three ZSs (924, 925 and 926 in Caporali et
alii, 2011), using the same kinematics of FORECVs, and
by means of eq. (4), returned values six times greater than
the seismic velocities. Because ZSs 924, 925 and 926 have
dimensions quite similar to FORECV-N, FORECV-C and
FORECV-S, it was recognized that a large amount of the
differences between the geodetic and seismic velocities is
due to the sparse order distribution and the exiguous
number of the GPS sites within the Apulia foreland. Actu-
ally, Caporali et alii (2011) computed geodetic strain rate
in the ZS 924 using 11 GPS station, whereas the ZSs 924, 925
and 926 contain 5,4 and 7 GSP station, respectively. At
least in these areas, further advance in the GPS network
could be certainly help to depict more robust strain fields.

At a more local scale, Ferranti et alii (2008) addressed
the interseismic deformation of the Southern Apennines
by analyzing new campaign GPS velocities. The observed
displacements suggest active extension to the west and transpersion in the east. Their GPS solutions for the
extensional belt of Southern Apennines suggest NE-SW
directed extension (fig. 5; sites A1-A4 with the Interna-
tional GPS System permanent site MATE held fixed).
When viewed relative to MATE sites located on the west-
ern part of the extensional area move toward the south-
west at rates which increase from ~1 mm/a to ~3.5 mm/a
from east to west (fig. 5). In particular, the scalar veloc-
ties of the more easterly sites (A1 e A2, fig. 5) are broadly
compatible with the extensional rates derived from his-
torical seismicity in this paper (~1 mm/a for the EXTCV),
whereas the two westernmost sites (A3 and A4 in fig. 5),
indicate rates of extension of ~3-4 mm/a.

Ferranti et alii (2008) also showed that the eastern
Apulia sites in Gargano and northern Murge are moving
westward relative to MATE with velocities of ~8 mm/a
(site B3 in Murge), ~5 mm/a (site B2 in Gargano) and
~3 mm/a (site B1 in Gargano). The authors suggested that
the progressive northerly decrease in westward motion
of sites B3, B2 and B1, relative to MATE, is accommodated
along ~east-west trending strike-slip faults mapped or
inferred across these sites. About 5 mm/a differential dis-
placement between B3 and B2 must be accommodated by
structures buried beneath the Ofanto valley (Ofanto fault
in fig. 5 or sub-parallel faults). Further to the north, dif-
ferential motion between sites B1 and B2, straddling
across the western part of the east-west striking Mattinata
Fault (fig. 5), which dissects the Gargano block, yields an
estimation of ~2 mm/a maximum right-lateral slip. This
result yields a difference of ~1 mm/a with the rate com-
puted for the FORECV-N along an E-W direction. Con-
versely, a difference of about 3-4 mm/a is observed
between the differential displacement between B3 and B2
and the FORECV-C value. However, because the volumes
used to compute active seismic deformations are different
from the area covered by the geodetic network (see fig. 5),
it is possible to hypothesize along and/or across strike
variation of seismic release properties within the vol-
umes, with areas of larger fraction of accumulated de-
formation released aseismically.

The comparison of the present seismic crustal defo-
mation rates with the long-term geologic strain rates is
obviously difficult, because geological data generally refer
to a fault or a fault system, whereas seismic crustal mod-
els provide results for a crustal volume that could include
other faults; but geological data offer the advantage of
including several seismic cycles, so they show a reliable
long-term average deformation rate. Velocity and strain
fields have been constructed from measurements of
striated faults offsetting Late Pleistocene and Holocene
features (Papanikolaou & Roberts, 2007; Tondi et alii,
computed the cumulative throw and throw-rate profiles
along a 170-km normal fault system, roughly coincident
with the EXTCV as defined in the present work. They
show that the cumulated throw-rate curve has a number of
local maxima and minima, but overall the summed
profiles resemble that for a single fault, as the maxima
occur close to the centres of the profiles, consistent with
interaction between these crustal-scale faults. They com-
puted a maximum value of 1,1±0.25 mm/a for the exten-sional rate by assuming 45° fault dips.

In the FORECV-N area, right-lateral motion along the
Mattinata fault system has been studied by Tondi et alii
(2005). The authors, by integrating the results of palaeo-
seismological data, giving 0.2-0.3 mm/a for the vertical
component of motion (which they estimated to be about 1/4 of the horizontal component), and those derived from
mesostructural analysis, inferred a dextral shear slip-rate
of 0.7-0.8 mm/a.

CONCLUSIONS

Drawing from seismicity catalogues, the rates of seis-mic moment release were computed together with the
seismic slip rates in seismic zones of southern Italy. Geo-
logical and geophysical data indicate that the region can
be divided into four broad crustal seismogenic volumes:
an extensional crustal volume in the western part and
three transtensional crustal volumes in the eastern area.
For each crustal volume, the seismic moment rates are
computed by integrating magnitude-frequency relations of
historical earthquakes. Finally, because the seismic slip
rate on a fault is proportional to the seismic moment
release, knowledge on the tectonic style of an area allow

to estimate the horizontal and vertical components of the
seismic slip rate.

With the aim of evaluating how deformational-rate estimates can be affected by variations of the modeled

crustal volumes, the geometry of the volumes was
changed. In a first step the overlapping of the volumes
was excluded using a 2D plan view to extract earthquakes
falling inside each crustal volume, whereas in the follow-
ing models the overlapping was accounted for, and conse-
quently, for the events inside this area of superposition,
a qualitative choice was carried out, based mainly on the
available macroseismic data, to define their crustal volu-
me of appurtenance. The main results of this research
may be summarized as follows:

1) The deformational pattern indicates the domi-
nance of extensional stress in the axial zone of the South-
ern Apennines, with the direction of maximum extension
almost NE-SW and velocity of about 1 mm/a. In the fore-
land domain, the deformational style is transtensional, with
the principal deformational axes trending ~E-W and
velocity ranging between 0.1 and 1.2 mm/a.
2) The errors that affect the estimate of the crustal deformation using the seismicity catalogues may be significant. These errors contribute to possible restrictions on the validity of the adopted formulas as well as to uncertainties in the parameters used, which include the completeness and quality of the seismological record. The parameters with by far the largest contribution are the coefficients of the magnitude-moment relationship; the second and third contributors are the coefficients of the magnitude-frequency distribution and the maximum magnitude. Uncertainties in the geometrics and kinematics parameters have minor effects.

3) Furthermore, the effects of the crustal model (and the consequent earthquake association) are in the same order as the uncertainties of the parameters involved in the computation.

4) Even if the use of historical earthquakes suffers from the intrinsic limitations of a qualitative and interpretative association of focal parameters, with the need for caution in interpreting the results, the estimated crustal deformation is quite close to the geodetic and geological values.

Overall, the computed deformational rates confirm the importance of the use of active tectonic terms for the Southern Apennines in the recent literature, thus highlighting the high seismogenic potential for the area with strong seismic-hazard implications.

Acknowledgements

I wish to thank Bruno Pace for useful, friendly and stimulating discussions at different stages of the paper. The anonymous reviewers, the Associate Editor Daniela Pantosti and the Editor in Chief Sandro Conticelli, are kindly acknowledged for their critical reading of the manuscript and for their valuable suggestions. The work was partially supported by “Fondi d’Ateneo ex 60%”, B. Pace responsible.

References

Del Gaudio V, Piriiri P, Frepoli A, Calcagnile G, Venisti N & Cimini G.B (2007) - A critical revision of the seismicity of Northern Apulia (Adriatic microplate-Southern Italy) and implica-

Aerial distribution of ground effects induced by strong earthquakes in the southern Apennines (Italy). Surveys in Geophysics, 23, 529-562.

Macroseismic data as information on source parameters of large earthquakes. Physics of the Earth and Planetary Interiors, 6, 316-323.

Structural and time constraints for dextral shear along the seismicogenic Mattinata fault (Gargano, southern Italy). Tectonophysics, 40 (2-3), 134-152.

- The investigation of potential earthquake sources in peninsular Italy: A review. J. Seism., 5, 287-306.

Manuscript received 11 January 2011; accepted 23 November 2011; published online 27 March 2012; editorial responsibility and handling by D. Pantosti.