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Abstract 20 

Any trustworthy probabilistic seismic hazard analysis (PSHA) has to account for the intrinsic 21 

variability of the system (aleatory variability) and the limited knowledge of the system itself 22 

(epistemic uncertainty). The most popular framework for this purpose is the logic tree. 23 

Notwithstanding its vast popularity, the logic tree outcomes are still interpreted in two 24 

different and irreconcilable ways. In one case, practitioners claim that the mean hazard of the 25 

logic tree is the hazard and the distribution of all outcomes does not have any probabilistic 26 

meaning. On the other hand, other practitioners describe the seismic hazard using the 27 

distribution of all logic tree outcomes. In this paper, we explore in detail the reasons of this 28 

controversy about the interpretation of logic tree, showing that the distribution of all 29 

outcomes is more appropriate to provide a joined full description of aleatory variability and 30 

epistemic uncertainty. Then, we provide a more general framework – that we name ensemble 31 

modeling – in which the logic tree outcomes can be embedded. In this framework, the logic 32 

tree is not a classical probability tree, but it is just a technical tool that samples epistemic 33 

uncertainty. Ensemble modeling consists of inferring the parent distribution of the epistemic 34 

uncertainty from which this sample is drawn. Ensemble modeling offers some remarkable 35 

additional features. First, it allows a rigorous and meaningful validation of any PSHA; this is 36 

essential if we want to keep PSHA into a scientific domain. Second, it provides a proper and 37 

clear description of the aleatory variability and epistemic uncertainty that can help 38 

stakeholders to appreciate the whole range of uncertainties in PSHA. Third, it may help to 39 

reduce the computational time when the logic tree becomes computationally intractable 40 

because of the too many branches. 41 

  42 



Introduction 43 

Seismic hazard practitioners distinguish uncertainties of different nature in a convenient way, 44 

adopting the term aleatory variability to describe the intrinsic irreducible variability of the 45 

process generating ground shaking intensity, and epistemic uncertainty to characterize all 46 

reducible uncertainties due to our limited knowledge about the true model describing the 47 

aleatory variability. Notwithstanding the popularity of this distinction (e.g. SSHAC, 1997), 48 

many authors and philosophers take the view that this separation is ambiguous, and it does 49 

not have a theoretical significance, because, as far as our knowledge of the system may 50 

increase, all uncertainties become necessarily epistemic (e.g., NRC, 1997; Bedford and 51 

Cooke, 1991; Lindley, 2000; Jaynes, 2003).  52 

The discussion about the distinction between aleatory variability and epistemic uncertainty is 53 

far to be purely academic. Indeed, this discussion is deeply rooted on the intrinsic meaning of 54 

probability (frequency versus degree of belief) and, more important, on the possibility to 55 

validate a probabilistic assessment like the outcome of probabilistic seismic hazard analysis 56 

(PSHA). Recently, Marzocchi and Jordan (2014) suggest that a clear and univocal taxonomy 57 

of uncertainties is not only of practical convenience, but it is of primary importance to 58 

validate meaningfully any probabilistic assessment, and, consequently, to keep PSHA into a 59 

scientific domain (see Marzocchi and Jordan, 2014 for a discussion on commonalities and 60 

differences with the traditional view of PSHA practitioners; e.g., SSHAC, 1997). In 61 

particular, Marzocchi and Jordan (2014) show that aleatory variability and epistemic 62 

uncertainty can be separated only in the framework of a well-defined experimental concept. 63 

The experimental concept defines collections of data, observed and not yet observed, that are 64 

judged to be exchangeable when conditioned on a set of explanatory variables (Draper et al., 65 

1993). When we define the set of data that we aim to describe and that will be used to test the 66 

model, we are implicitly defining an experimental concept. In this framework, the aleatory 67 

variability is not associated to the true physical process, but it is described by the event 68 

frequency of the exchangeable dataset, and the epistemic uncertainty is represented by the 69 



lack of knowledge of what the true frequency is. In a time-independent PSHA context 70 

(Marzocchi and Jordan, 2014), an experimental concept can be defined by a sequence of 71 

ground shaking exceedances in one specific site that are assumed to be exchangeable in time. 72 

In this case, the aleatory variability is the long-term frequency of exceedances for that specific 73 

site, i.e., the true hazard, and the epistemic uncertainty is the lack of knowledge of what the 74 

true hazard is. (Note that in this paper we quantify the seismic hazard in terms of exceedance 75 

probability). Worthy of note, despite providing an unambiguous distinction between aleatory 76 

variability and epistemic uncertainty, this taxonomy is consistent to the SSHAC's view (1997) 77 

of uncertainties (as a footnote of section 2.2.3 of the main SSHAC report the authors write: 78 

"The distinction between aleatory and epistemic uncertainty may at first appear inconsistent 79 

with the Bayesian view of probability, but, in fact, it is entirely consistent with this view. 80 

Aleatory uncertainties may be thought of as frequencies of a set of exchangeable events or as 81 

frequency distributions of an exchangeable set of continuous random variables. If the 82 

frequencies or frequency distributions are uncertain, it makes perfect sense to assess 83 

probability distributions over the unknown frequencies or parameters of the unknown 84 

frequency distributions."). 85 

According to this view, any trustworthy PSHA must provide a reliable estimate of the 86 

aleatory variability incorporating in a proper way the epistemic uncertainty. While each single 87 

PSHA model aims to describe the aleatory variability, the inclusion of epistemic uncertainty 88 

is usually tackled by analyzing the results of alternative and scientifically acceptable PSHA 89 

models (SSHAC 1997). This is usually made using the logic tree structure as originally 90 

suggested by Kulkarni et al. (1984). In essence, the logic tree dissects the PSHA problem into 91 

basic components embedded in a hierarchical framework. The nodes represent a logical 92 

progression of potential sources of epistemic uncertainty and the branches depict the possible 93 

alternative describing the uncertainty at each node. The final branches are meant to represent 94 

the complete epistemic uncertainty in PSHA and they are combined using the probabilistic 95 

structure of classical probability tree. Despite the use of the logic tree scheme has become de 96 



rigueur, it is well known that there are conceptual pitfalls that should be taken into account 97 

(Bommer and Scherbaum, 2008). The most important controversy regards the interpretation 98 

of the logic tree output. As a matter of fact, in PSHA practice there are two different and 99 

irreconcilable attitudes: some scientists describe the hazard using the percentiles of the logic 100 

tree outcomes (Abrahamson and Bommer, 2005; Stucchi et al., 2011; Field et al., 2014), 101 

while others firmly claim that the use of percentiles throws away probabilism and the mean 102 

hazard is the hazard (e.g., McGuire et al., 2005; Musson, 2005; 2012).  103 

Understanding the reasons and consequences of these apparently irreconcilable views is 104 

essential for a proper description of the epistemic uncertainty in PSHA. In this paper we 105 

explore in detail this issue and we provide a framework to interpret the variability of logic 106 

tree outcomes. This general framework – that we name ensemble modeling – offers also 107 

further opportunities. It does not require necessarily a logic tree, but it may apply also to 108 

independent hazard models. It provides a formal framework to validate and test meaningfully 109 

PSHA models and to fully characterize aleatory variability and epistemic uncertainty. It may 110 

help to reduce significantly the computational time when moving from hazard to risk. 111 

 112 

Two views of the logic tree outcomes in PSHA 113 

The logic tree (Kulkarni et al., 1984) incorporates the epistemic uncertainty borrowing the 114 

same probabilistic structure of classical probability trees. Probability trees, like event trees 115 

and fault trees (e.g. Kumamoto and Henkley, 1996), are very useful tool to facilitate the 116 

treatment of probabilistic problems that may be described through a hierarchical structure 117 

with a discrete number of possibilities. One of the most remarkable common features of all 118 

flavors of probability tree is that they are structured to fully represent all possible outcomes. 119 

In other words, all branches emerging from a node of the tree must represent a mutually 120 

exclusive and collectively exhaustive (MECE) set of events, and, as a consequence, one path 121 



of the tree must represent the true outcome. The MECE postulation implies that the 122 

probabilities of the logic tree can be combined using the law of total probability that reads  123 

   (1) 124 

where Pr(E) is the probability of the event of interest, Pr(E | Hi) is the conditional probability 125 

of the event E given the terminal branch of the probability tree Hi , and Pr(Hi) is the 126 

probability that the terminal branch Hi (i=1,...,N) is the true one; the latter is also known as the 127 

weight of the i-th terminal branch and it has a clear and univocal probabilistic interpretation 128 

(Scherbaum and Kuhen, 2011). Some relaxations of the MECE assumption have been made, 129 

mostly motivated by practical aspects (see, e.g., Newhall and Hoblitt, 2002; Marzocchi et al., 130 

2010), but these changes involve much more cumbersome calculations, and, in any case, these 131 

generalizations of the probability trees still consider all possible outcomes.  132 

We argue that applying this probabilistic structure – which is based on equation 1 and the 133 

MECE postulation – to the logic tree in PSHA raises several problems. The most important 134 

one stems from the fact that the structure of the probability tree has been designed to describe 135 

the aleatory variability, not the epistemic uncertainty. This important feature of the 136 

probability tree can be grasped through a simple example that does not pretend to be 137 

exhaustive of the functioning of any possible probability tree, but it underlies its basic 138 

features. In Figure 1 we plot a probability tree to calculate the probability to get head, Pr(E), 139 

from coin tosses. In particular, there are two boys (Tim and Tom) having two and three coins 140 

each. Tim's coins are biased having Pr(E | Hi) (i.e., the probability of getting head by the i-th 141 

coin) equal to 0.4 and 0.3. Tom's three coins are biased as well, with Pr(E | Hi) equal to 0.7, 142 

0.7, and 0.8.  If we do not know who will toss the next coin (Tim and Tom have the same 143 

probability to be selected) and the coin that will be used (each coin has the same probability 144 

to be thrown), the tree has five terminal branches with different weights, i.e., each one of 145 

Tim's branches has Pr(Hi) =0.25, while Tom's branches have weight  Pr(Hi)= . The 146 

probability of getting head when we don't know who is going to toss the coin and the coin that 147 



will be tossed is given by equation 1, i.e., Pr(E) =0.54. This value has a frequentist 148 

interpretation because it describes the aleatory variability of the experimental concept; if we 149 

run a simulation in which, for each run, we select randomly the boy who will toss the coin 150 

and the coin to be tossed, the expected long-term frequency of head is 0.54. In this example, 151 

the branches distribution describes exhaustively all possible cases, mimicking the lack of 152 

knowledge of which path (which boy and which coin) will be followed in each run; this 153 

uncertainty is taken into account by the averaging of equation 1.   154 

If this probabilistic scheme is directly applied to PSHA, it follows that i) the mean hazard is 155 

the true hazard (McGuire et al., 2005); ii) Pr(Hi) represents the probability of the model Hi to 156 

be the true hazard model (since no practitioner believes that one of the paths of the logic tree 157 

represents the true hazard, the MECE assumption is pragmatically resumed replacing the term 158 

true with the one that should be used; Scherbaum and Kuhen, 2011); iii) the use of percentiles 159 

does not make sense in this framework (Musson, 2012).  However, the logic tree applications 160 

in PSHA are meant to do something different. In fact, the branches of the logic tree represent 161 

different alternatives, not different possibilities as in the probability tree of Figure 1. Within 162 

the logic tree in PSHA we expect that the branch that should be used is always the same. 163 

Applying the logic tree concept to the example of Figure 1, we would have the same 164 

(unknown) coin tossed by the same (unknown) boy. In this case, the mean value (0.54) no 165 

longer has a frequentist interpretation, and it does not represent the true Pr(E) (the aleatory 166 

variability) that is given by the outcome of one (unknown) of the final branches. Coming back 167 

to a PSHA context, this implies that the mean hazard is not the true hazard, because the mean 168 

will almost never coincide with the branch that should be used.  169 

This problem is not properly acknowledged in scientific literature, but probably it 170 

unconsciously motivates the peculiar use of the logic tree made by some practitioners. Instead 171 

of using only the mean, they give more emphasis to the full discrete distribution of the final 172 

branches outcome using percentiles (e.g., Abrahamson and Bommer, 2005; Stucchi et al., 173 

2011; Field et al., 2014). Although this approach has an intuitive appealing because, using the 174 



SSHAC words (SSHAC, 1997), it represents "the center, the body, and the range of technical 175 

interpretations that the larger technical community would have if they were to conduct the 176 

study", conversely it violates the probabilistic framework of the probability trees described by 177 

equation 1 and the MECE postulation, causing part of the controversies at the base of the use 178 

and misuse of the logic tree (e.g. Bommer and Scherbaum, 2008), and in particular the 179 

controversy related to the interpretation of the logic tree outcomes. 180 

If the goal of the quantification of epistemic uncertainty is to establish where the true hazard 181 

(the true aleatory variability) should be (SSHAC 1997; Marzocchi and Jordan, 2014), we may 182 

use the variability of the outcomes generated by a set of reasonable models to bound where 183 

the true hazard is expected to be. This view is coherent with the use of percentiles in the 184 

context of a logic tree. Conversely, it is not coherent with the probabilistic structure of a 185 

classical probability tree, which must honor equation 1 and MECE postulation. So, when 186 

using the full distribution of the logic tree outcomes, the logic tree is not anymore a 187 

probability tree, but it is only a technical tool that facilitates the production of a range of 188 

models sampling the epistemic uncertainty. Moreover, the weight of each model no longer 189 

has a specific probabilistic meaning, and there is no need to keep limited the number of 190 

branches as advocated by Scherbaum and Bommer (2008).   191 

To summarize, if we aim to estimate the true hazard, we should abandon the approach that 192 

considers the mean hazard as the true hazard (McGuire et al., 2005; Musson, 2005, 2012), 193 

that is, we should abandon the probabilistic interpretation of logic trees based on MECE 194 

assumption and equation 1. Of course this does not mean that the mean hazard of a logic tree 195 

should not be used, but we have to be aware that, alone, it does not represent a long-term 196 

frequency of exceedances (i.e., the aleatory variability). This aspect is of paramount 197 

importance when testing hazard models; indeed, Marzocchi and Jordan (2014) show that the 198 

practice of using only the mean to test hazard models (e.g. McGuire and Barnhard, 1981; 199 

Stirling and Petersen, 2006; Albarello and D'Amico, 2008; Stirling and Gerstenberger, 2010) 200 

may lead to reject reliable models. On the other hand, the collection of all logic tree outcomes 201 



is intuitively more informative as any single value (SSHAC, 1997), and in the next section we 202 

show that these outcomes may be embedded into a quantitative framework – named ensemble 203 

modeling – which provides a coherent description of the aleatory variability and epistemic 204 

uncertainty of the seismic hazard. This description is essential to carry out any robust 205 

statistical testing of PSHA, and to deliver a more complete description of the seismic hazard 206 

to any interested stakeholder.  207 

 208 

  Ensemble modeling 209 

We have just showed that the use of percentiles of logic tree aims to sample the epistemic 210 

uncertainty, not to fully describe it. This difference is not only semantic, but it has important 211 

consequences. Having a sample of the epistemic uncertainty implicitly means that the 212 

epistemic uncertainty can be fully characterized by a parent distribution from which the 213 

sample has been drawn. In a PSHA context – where this sample consists of a set of 214 

exceedance probabilities – Marzocchi and Jordan (2014) call this parent distribution extended 215 

experts' distribution. Ensemble modeling consists essentially of inferring this extended 216 

experts' distribution from the sample provided by the logic tree, or by any set of models that 217 

sample the epistemic uncertainty.  The terms ensemble modeling and ensemble forecasts are 218 

used in many disciplines in different ways since early seventies (e.g. Leith, 1974). The recent 219 

Nate Silver's book  (Silver, 2012) gives a wide range of successful applications and uses of 220 

ensemble modeling. The common feature across all these different flavors of ensemble 221 

modeling/forecasts is the attempt to account for epistemic uncertainty merging 222 

models/forecasts in a proper way.  223 

In PSHA the logic tree outcome can be described by a vector , where  is the hazard 224 

curve of the i-th branch in a set of N branches, and  is its weight. The epistemic uncertainty 225 

is visually portrayed by a family of hazard curves for each site. The bundle of curves can be 226 

dissected horizontally or vertically. In the first case, we get the distribution of the ground 227 



motion parameter for a specific exceedance probability. The second case is of particular 228 

interest for two main reasons. First, it is easier to conceive an experimental concept for 229 

testing; for instance, collecting exceedance events of a reference ground shaking intensity in a 230 

set of exchangeable time intervals for one specific site (see, e.g., Marzocchi and Jordan, 231 

2014). Second, we get a distribution of exceedance probability for one specific value of the 232 

ground shaking intensity. The use of a probability distribution of probability has been matter 233 

of discussion and controversies in statistical literature and among practitioners (e.g. Bedford 234 

and Cooke, 1991; Lindley, 2000; Vick, 2002; Jaynes, 2003; Cox et al., 2008). These 235 

controversies have been addressed by Marzocchi and Jordan (2014) who provide a formal and 236 

consistent probabilistic framework in which probability is described through a distribution. 237 

The central value of this distribution is the best guess of the frequency of an exchangeable 238 

dataset (i.e., the aleatory variability), and the dispersion around the central value mimics the 239 

epistemic uncertainty (see also SSHAC, 1997; Marzocchi et al., 2008). This distribution has 240 

an intuitive interpretation, because it bounds where the true aleatory variability is expected to 241 

be. In case a single value is required to characterize the distribution, we emphasize that the 242 

mean value has the same legitimacy as any other single statistics, like the mode and the 243 

median to represent the distribution.  244 

When dissecting the bundle of hazard curves vertically,  is replaced by  that represents 245 

the exceedance probability of the i-th model/branch for the z-th ground shaking threshold. 246 

Here ensemble modeling considers as a sample of an unknown parent distribution 247 

 that describes the random variable  taking into account the aleatory variability 248 

and epistemic uncertainty. The sample  can either stem from one or more logic 249 

trees, or from a collection of models (hereafter with the term 'model' we mean either an 250 

independent model or a final branch of a logic tree); the only requirement is that  251 

represents an unbiased sample of the epistemic uncertainty. Models' output may be correlated 252 

and the weight attached to each model should properly take into account not only the 253 



confidence on each model (based on expert opinion and/or on quantitative evaluation of the 254 

forecasting performances), but also the possible strong correlation with other models 255 

(Marzocchi et al., 2012; Rhoades et al, 2014).  256 

Notwithstanding inferring a distribution from a sample of data always introduces a potential 257 

source of ontologic error, we argue that this step is not more subjective than considering the 258 

percentiles as describing the real distribution of epistemic uncertainty. The inference of a 259 

parent distribution from a sample is one of the cornerstones of statistics, because it allows 260 

more meaningful tests and comparisons of models/hypotheses. In the following examples we 261 

show some of the additional features provided by the ensemble modeling framework.  262 

 263 

  Some realistic examples  264 

In this section we show how ensemble modeling applies to two different realistic cases with 265 

few (a synthetic case for Italy) and many (UCERF3; Field et al., 2014) logic tree outcomes 266 

that describe well a wide range of possible scenarios for PSHA calculations. We underline 267 

again that the same example could have been made using independent hazard models without 268 

using any logic tree. 269 

In the first example, we consider the seismic hazard for two cities in Italy, Cosenza and 270 

Bologna; Cosenza is located in a region with the highest seismic hazard in Italy, while 271 

Bologna is located in a medium seismic hazard area. The seismic hazard is obtained by a 272 

simple logic tree (Figure 2) composed by 5 different seismicity rate models, and three 273 

GMPEs. We arbitrarily select from the Italian CSEP experiment (Schorlemmer et al., 2010) 274 

five seismicity rate models: Hazgridx (Akinci, 2010), PHMzone (Faenza and Marzocchi, 275 

2010), ALM (Gulia et al., 2010), MPS04 (MPS Working Group, 2004) and TripleS (Zechar 276 

and Jordan, 2010). The GMPEs are the ones proposed by Cauzzi and Faccioli (2008), Akkar 277 

and Bommer (2010), and Bindi et al. (2011). The weight of each model is assigned arbitrarily 278 

(Figure 2). This example does not aim at providing the true hazard in these sites, but it has 279 



been set up in order to show the functioning of the ensemble modeling in a realistic situation 280 

made by few branches of a logic tree.  281 

In Figures 3 and 4 we show the seismic hazard for Cosenza and Bologna, respectively. In the 282 

upper panels, we show the mean and percentiles of the hazard curve for the peak ground 283 

acceleration (PGA). Although ensemble modeling does not impose any specific parametric 284 

distribution for , the Beta distribution is commonly used to describe a unimodal 285 

random variable bounded between 0 and 1 (Gelman et al., 2003). In this case, we assume that 286 

, where the parameters  and  are related to the average and variance of 287 

 that are provided by the set of hazard models/branches. In particular,   288 

     (2) 289 

and  290 

     (3) 291 

where  and  are the weighted average and variance of the exceedance 292 

probabilities of the z-th ground shaking threshold. Inverting equations 2 and 3 we can get the 293 

parameters of the Beta distribution. Calculating the Beta parameters of the exceedance 294 

probability for a set of ground shaking thresholds, we can plot the uncertainty over the full 295 

hazard curve.  296 

In particular, the percentiles of Figures 3 and 4 are obtained plotting the percentiles of the 297 

Beta distribution applied to the exceedance probability associated to a set of ground shaking 298 

thresholds. The area bounded by the 10-th and 90-th percentiles shows where the true hazard 299 

curve is expected to be with 80% of probability. In the lower panels we show the distribution 300 

of the exceedance probability for one specific ground shaking intensity (marked by a vertical 301 

line in the upper panel). The Beta distribution fits well the outcomes of the logic tree in both 302 

cases (we verify this hypothesis using the Kolmogorov-Smirnov one-sample test modified by 303 



Lilliefors (1967) applied to the cumulative distributions in the lower right corner of Figures 3 304 

and 4).  305 

In this application the use of ensemble modeling offers to PSHA practitioners some additional 306 

features. The most important is that replacing few probability outcomes with a continuous 307 

distribution describing the aleatory variability and epistemic uncertainty is crucial for a 308 

meaningful test of any PSHA model (Marzocchi and Jordan, 2014). For example, having 15 309 

branches the confidence interval defined by the lowest and highest percentiles is about 87%, 310 

implying that the true value has a probability of 0.13 to be outside from this interval. Having a 311 

continuous distribution allows practitioners to define more appropriate confidence intervals 312 

for testing and validation. Moreover, describing the epistemic uncertainty with a continuous 313 

distribution allows more meaningful comparisons and quantitative tests between hazards in 314 

different sites, and facilitates the identification of the sites where the true hazard may be more 315 

distant from the mean hazard, i.e., where we expect the largest variations of the mean hazard 316 

in future hazard evaluations (e.g. Paté-Cornell, 1996). For example, two sites with the same 317 

mean hazard may have a quite different dispersion of the exceedance probability distribution; 318 

this means that, although the mean hazard is the same, the site with the largest dispersion may 319 

have the true hazard much lower (or much higher) than the other site, and future analysis may 320 

provide mean significantly different for that site.  321 

When the logic tree is composed by many branches like in UCERF3 (Field et al., 2014), the 322 

use of a continuous distribution may become superfluous, because the difference between 323 

adjacent percentiles becomes more and more negligible. Anyway, also in this case the 324 

ensemble modeling view offers some additional features.  In Figures 5 and 6 we show the 325 

7200 exceedance probabilities relative to the average PGA for 2% in 50 years for two 326 

different sites, Los Angeles and Redding. All these values come from one logic tree 327 

developed in the framework of UCERF3 (Field et al., 2014). The Beta distribution (equations 328 

2 and 3) fits very well for Los Angeles, while for Redding the Beta distribution does not fit 329 

well the data because the outcomes of the logic tree are markedly bimodal. Adopting an 330 



ensemble modeling strategy, here practitioners have two options: if they think that their 331 

models are a representative sample of the epistemic uncertainty (i.e., they are assuming that 332 

additional model are not expected to fill that gap), they may use a different parametric 333 

distribution or a nonparametric fitting. For example, in Figure 6 we use the MATLAB 334 

function ksdenstity(x) (Bowman and Azzalini, 1997) that computes a probability density 335 

estimate from the set of weighted exceedance probabilities (we use 50 equally spaced points 336 

that cover the range of the exceedance probability). This option is quite similar to the direct 337 

use of percentiles to estimate . Otherwise, if they think that the bimodality is only due 338 

to the fact that the models used are just exploring only two extreme scenarios, they may still 339 

use a Beta distribution that fills the gap between the two modes. Of course, the choice of the 340 

most proper option introduces further subjectivity in PSHA, but we argue that this choice is 341 

certainly less subjective than describing the hazard using the mean alone, or using the 342 

percentiles of the distribution that implicitly means to impose a nonparametric distribution.  343 

In this case, ensemble modeling framework offers also a further practical advantage. A 344 

seismic hazard logic tree with many branches can be hardly used for risk calculations if we 345 

still want to honor the logic tree structure, because it may require a prohibitive computational 346 

time (Field et al., 2005; Selva et al., 2013). In an ensemble modeling perspective, there is no 347 

need anymore to preserve the logic tree structure (intimately related to the MECE 348 

assumption) for further analysis. In practice, we may randomly sample (taking into account 349 

the relative weight of each model/branch) a convenient number, L, of hazard curves from the 350 

outcome of the seismic hazard logic tree and to combine each one of them with a 351 

correspondent randomly sampled vulnerability function.  352 

The L combinations will yield a set of L risk curves that can be eventually used to build a 353 

parent distribution using the same ensemble modeling strategy. For example, while the use of 354 

a logic tree structure imposes the number of combinations, say L
*
, between the hazard and 355 

vulnerability branches, the ensemble modeling approach allows practitioners to select a 356 



manageable number of combinations L, reducing the computational time of about a factor 357 

L
*
/L.  358 

 359 

Discussion and conclusions 360 

In this paper we have explored the rationales behind some apparently irreconcilable 361 

interpretations of the logic tree outcomes in PSHA. In particular we have showed that a 362 

proper interpretation of the logic tree outcomes requires considering all final branches. In this 363 

case, the logic tree does not have to conform to the probabilistic scheme of classical 364 

probability trees, but it is just a technical tool that facilitates the construction of multiple 365 

models that sample the epistemic uncertainty. 366 

We have also showed that the interpretation of the logic tree outcomes can benefit if we 367 

embed these outcomes into a more general probabilistic framework that we name ensemble 368 

modeling. Ensemble modeling allows scientists to define a parent distribution (called 369 

extended experts' distribution by Marzocchi and Jordan, 2014, when the sample is composed 370 

by exceedance probabilities) from a discrete set of values that can be obtained either from the 371 

branches of a logic tree or from the collection of different hazard models. The central value of 372 

this extended experts' distribution represents the best guess of the aleatory variability (the true 373 

hazard), and the dispersion around the central value mimics the epistemic uncertainty that 374 

bounds where the true hazard is expected to be (see also SSHAC, 1997). Ensemble modeling 375 

assumes that models are independent or that the weights associated to each model account for 376 

possible correlation between models (e.g. Bommer and Scherbaum, 2008; Marzocchi et al., 377 

2012). If possible dependences among models are not properly accounted for, the parent 378 

distribution turns to be biased and it can be rejected through a formal test, or, using the 379 

Marzocchi and Jordan (2014) terminology, it exposes the model to an ontologic error. 380 

Noteworthy, this more general approach makes no longer the use of logic tree de rigueur, 381 



because the epistemic uncertainty can be either sampled by a logic tree, or by a set of 382 

different models. 383 

Finally, we have showed that the use of the ensemble modeling view has some remarkable 384 

additional features. First, it may serve to design a rigorous testing phase of PSHA models, and 385 

to properly compare seismic hazards in different sites. Second, it provides a proper 386 

description and distinction of the aleatory variability and epistemic uncertainty; this can be 387 

helpful to show to the stakeholders the sites with the highest epistemic uncertainty, i.e., the 388 

sites where future large variations of the mean hazard are more likely. Third, it may 389 

drastically reduce the computational time, because we can combine different levels of 390 

information without preserving necessarily the logic tree structure.  391 

 392 

Data and resources 393 

The earthquake rate models used for Figures 3 and 4 are taken from the CSEP Italian 394 

experiment and they are described in the quoted references. The hazard data for Los Angeles 395 

and Redding (Figures 5 and 6) have been provided by Peter M. powers on March 20, 2014. 396 
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Figure captions 524 

Figure 1. Probability tree of coin toss (see text for more details). On the right end side of the 525 

tree, the weight of the path Pr(Hi) (in blue) and the branch value Pr(E| Hi) (in black) are 526 

reported.  527 

Figure 2. Logic tree for the seismic hazard analysis in Cosenza and Bologna. The first five 528 

branches on the left represent the earthquake rate models; the second three branches are the 529 

GMPEs used. The description of the models is reported in the text and in the cited references. 530 

On the right end side of the tree, the (arbitrary) weight of each branch is reported. 531 

Figure 3. a) Mean and 10-th, 50-th and 90-th percentiles of the PGA seismic hazard curve for 532 

the city of Cosenza; The vertical line marks one specific ground shaking value that is used for 533 

the other panels of the figure. b) 50-years exceedance probability distribution for a PGA of 534 

0.15 g. The vertical gray lines show the outcomes of the logic tree, and the height is the 535 

weight of each datum; the black line is the Beta PDF estimated by the data using equations 2 536 

and 3. c) The empirical cumulative distribution of the logic tree outcomes (in gray), and the 537 

cumulative distribution of the Beta distribution (in black).  538 

Figure 4. As for Figure 3, but relative to the city of Bologna.  539 

Figure 5. PDF (left y-axis) and hystogram (right y-axis) of the UCERF3 logic tree 540 

exceedance probabilities relative to the reference PGA (2% in 50 years) for the site of Los 541 

Angeles. 542 

Figure 6. As for Figure 5, but relative to the site of Redding.  543 

 544 



 

Figure 1. Probability tree of coin toss (see text for more details). On the right end side of the 
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Figure 2.  Logic tree for the seismic hazard analysis in Cosenza and Bologna. The first five 
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Figure 3. a) Mean and 10-th, 50-th and 90-th percentiles of the PGA seismic hazard curve for 
the city of Cosenza; The vertical line marks one specific ground shaking value that is used for 
the other panels of the figure. b) 50-years exceedance probability distribution for a PGA of 
0.15 g. The vertical gray lines show the outcomes of the logic tree, and the height is the 
weight of each datum; the black line is the Beta PDF estimated by the data using equations 2 
and 3. c) The empirical cumulative distribution of the logic tree outcomes (in gray), and the 
cumulative distribution of the Beta distribution (in black). 
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Figure 4. As for Figure 3, but relative to the city of Bologna. 
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Figure 5. PDF (left y-axis) and hystogram (right y-axis) of the UCERF3 logic tree 
exceedance probabilities relative to the reference PGA (2% in 50 years) for the site of Los 
Angeles. 
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Figure 6. As for Figure 5, but relative to the site of Redding 
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