Seismic Q estimates in Umbria-Marche (central Italy): hints for the retrieval of a new attenuation law for seismic risk

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Geophysical Journal International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>GJI-S-14-0832.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>02-Feb-2015</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Pisconti, Angelo; Università di Bari, Dipartimento di Scienze della Terra e Geoambientali
 | Del Pezzo, Edoardo; Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano
 | Bianco, Francesca; INGV -Osservatorio Vesuviano-Istituto Nazionale di Geofisica e Vulcanologia, Seismology
 | de Lorenzo, Salvatore; Università di Bari, Scienze della Terra e Geoambientali |
| Keywords: | Seismic attenuation < SEISMOLOGY, Computational seismology < SEISMOLOGY, Numerical approximations and analysis < GEOPHYSICAL METHODS |
Seismic Q estimates in Umbria-Marche (central Italy): hints for the retrieval of a new attenuation law for seismic risk

Angelo Pisconti (*), Edoardo Del Pezzo(1,**), Francesca Bianco(**) and Salvatore de Lorenzo (*)

*Dipartimento di Scienze della Terra, Università di Bari “Aldo Moro”, Bari, Italy

**Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli Osservatorio Vesuviano, Napoli, Italy

(1) also at Instituto Andaluz de Geofisica, Universidad de Granada, Granada, Spain

corresponding author:
Salvatore de Lorenzo, via Orabona 4, 70125 Bari, Italy, email: salvatore.delorenzo@uniba.it
Abstract

In the Umbria Marche (Central Italy) region an important earthquake sequence occurred in 1997, characterized by nine earthquakes with magnitudes in the range between 5 and 6, that caused important damages and causalities. In the present paper we separately estimate intrinsic- and scattering- Q^{-1} parameters, using the classical MLTWA approach in the assumption of a half space model. The results clearly show that the attenuation parameters Q_i^{-1} and Q_s^{-1} are frequency dependent. This estimate is compared with other attenuation studies carried out in the same area, and with all the other MLTWA estimates obtained till now in other tectonic environments in the Earth. The bias introduced by the half space assumption is investigated through numerical solutions of the Energy Transport equation in the more realistic assumption of a heterogeneous crust overlying a transparent mantle, with a Moho located at a depth ranging between 35 and 45 km below the surface. The bias introduced by the half space assumption is significant only at high frequency. We finally show how the attenuation estimates, calculated with different techniques, lead to different PGA decay with distance relationships, using the well known and well proven Boore’s method. This last result indicates that care must be used in selecting the correct estimate of the attenuation parameters for seismic risk purposes. We also discuss the reason why MLTWA may be chosen among all the other available techniques, due to its intrinsic stability, to obtain the right attenuation parameters.

Introduction

For a complete revision of the seismic risk studies, the detailed knowledge of local attenuation vs. distance relationship is fundamental, as it governs how the energy of seismic radiation decreases with distance. For risk purposes, the empirical ground motion amplitude (max displacement, velocity or acceleration) decay curve with distance, calculated from experimental data, is commonly taken as the characteristic attenuation-distance curve in the area under study. Being empirically determined (see e.g. Akkar and Bommer, 2010), such curves do not explicitly contain information about the attenuation mechanisms of the seismic energy, which, on the contrary, can be deduced by
measurements based on a physical model of attenuation. Such a model should include scattering losses, due to the important effects of heterogeneity in modifying the primary wave field and in the same time producing a scattering wave field (Sato and Fehler, 1998). The importance of scattering attenuation resides in the fact that part of the (apparently) absorbed energy associated with direct (ballistic) waves is recuperated in the scattered waves, which in turn are associated with lapse times much longer than the direct wave travel times, thus constituting the coda of the seismograms.

The purpose of the present paper is to contribute to the formulation of the seismic hazard in the Umbria Marche region, with a novel estimate of the quality factor, Q. From a physical point of view, the wave energy decay for cycle (−ΔE/E) is expressed in terms of the quality factor parameter, Qi, in turn related to the attenuation coefficient, η, through the following equation:

\[
-\frac{\Delta E}{E} = 2\pi \frac{2\pi}{Q_T} = 2\pi \left(\frac{1}{Q_i} + \frac{1}{Q_S} \right) = \frac{v\eta}{f} \tag{1}
\]

where v is the wave speed, f is the frequency of the wave motion, Qi and Qs are respectively the intrinsic-and scattering-Q. It is noteworthy that, in general, QT depends on the wave type (P, S, Surface, coda). The physical mechanism of energy dissipation (intrinsic or scattering) determines which part of QT is associated with scattering or with intrinsic attenuation.

This effect is important and should be taken into account for seismic risk purposes too, as a high scattering attenuation on one hand reduces the amplitude of direct waves, while on the other hand makes the direct wave train longer, for the effect of scattering. This is the reason why, in the present paper, we face with a separate estimate of intrinsic and scattering quality factors, trying in this way to understand the attenuation mechanisms in the seismic region of Umbria-Marche (Central Italy). We first give a review of the already calculated estimates of the seismic quality factors in this region, and then re-estimate separately intrinsic-and scattering-Q using the theory of the elastic Energy Transfer and Multiple Lapse Time Window Analysis (MLTWA) method (Fehler et al., 1992). Then we evaluate the leakage effect of a transparent mantle, i.e. a mantle characterized by no scattering, through the numerical simulations obtained with a Montecarlo method (Yoshimoto,
2000). Finally we show how the different Q estimates produce different Peak Ground Acceleration (PGA) curves with distance in the area under study, enlightening the important role of the attenuation studies in the seismic risk assessment.

Seismological setting

The Umbria-Marche region (central Italy) is a seismically active region of the northern Apennines. A prolonged seismic crisis occurred in this area in 1997, with nine main-shocks having a magnitude higher than Mw = 5, and more than 2000 aftershocks (Amato et al., 1998). The seismicity in the area is generated by a complex fault system, related to several compressional and extensional tectonic phases (Pauselli et al., 2006). From the Oligocene to the present-day, the area has experienced two phases of eastward migrating deformation: an early compression with eastward directed thrusting and a later phase of extension (Pauselli et al., 2006). The 1997 seismic activity was recognized as due to tectonic activity along both a low-angle detachment fault, known as Alto Tiberina fault and associated antithetic faults (e.g. Chiaraluce et al., 2003). The spatial and temporal evolution of the 1997 Umbria–Marche seismic sequence was successfully modeled in terms of subsequent failures promoted by fluid flow (Miller et al., 2004; Antonioli et al., 2005). A fluid-filled separated crack system was also invoked to explain the polarization anomalies of S waves (de Lorenzo and Trabace, 2011).

After the 1997 seismic crisis, several episodes of prolonged seismic activity occurred in the area, indicating that the Umbria-Marche region is one of the most tectonically active zones of Apennines. To mitigate seismic hazard, it is therefore very important to assess how the seismic energy scales with the distance in the area. Previous seismic attenuation studies of the Umbria-Marche region have been carried out (Del Pezzo and Zollo, 1984, Del Pezzo and Scarcella, 1986, Castro et al., 1998, Bindi et al., 2004, Castro et al., 2004, de Lorenzo et al., 2010, 2013a, 2013b). In particular, de Lorenzo et al. (2010) inferred source and attenuation parameters under the assumption of a constant Q_p. They inferred an average Brune (1976) stress drop $\Delta\sigma_b = 7 MPa$, and computed the following seismic moment M_0 vs. magnitude M_L relationship:
\[\log_{10} M_0 = 0.81M_L + 11.85 \]

where \(M_0 \) is measured in Nm.

de Lorenzo et al. (2013a) separated the frequency dependent intrinsic \(Q_i^{-1} \) and scattering \(Q_s^{-1} \) attenuation parameters for the Umbria-Marche region using the approach developed by Wennerberg (1993), that is based on the separate estimates of S-wave total-attenuation coefficient and Q-coda attenuation. These authors also estimated coda attenuation \(Q_c^{-1} \), using the isotropic single-scattering model (Sato,1977), and the shear wave attenuation \(Q_s^{-1} \), using the coda normalization method (Aki, 1980). By comparing the Q estimates for the investigated area with those of other tectonically active regions of the world, obtained using the same approach, it was inferred that the Umbria-Marche region is characterized by higher values of \(Q_i^{-1} \), \(Q_s^{-1} \) and \(Q_c^{-1} \). It is noteworthy that the Wennerberg (1993) approach assumes that source and receiver are co-located, with no correction for site effects. As a consequence, this method furnishes reasonable but rough estimates only when the S wave travel time from the source to receiver is smaller as compared to the lapse times considered in the analysis (de Lorenzo et al. 2013a). To overcome the limits of the previous analysis, in this article we use the MLTWA technique, that implicitly takes into account the site effects, combined with the energy formulation due to Paaschens (1997), to remove the limitation of source and co-located receiver due to the Wennerberg (1993) approach. The previously obtained results are reported in table I.

Data, Technique and Results

The MLTWA technique (Fehler et al., 1992) is the most used method to separate the contribution of scattering and intrinsic attenuation on the seismic radiation. The method is based on the comparison between the observed and the theoretical seismic energy envelope in three fixed time windows following the S-wave arrival. To remove source intensity and site effects, the energy density is
normalized to the energy content of a coda window of the same duration of the signal windows and starting at a given lapse time, the same for all the seismograms, calculated starting from the origin time (Aki, 1980).

The seismic energy envelope as a function of the lapse time and the distance, in a homogeneous half-space, can be modeled using the Energy Transport equation (Ishimaru, 1978) whose (approximate) analytical solution in 3-D is given by Paasschens (1997) (Formula 6 in Appendix), that describes the energy decay with lapse time and distance, implicitly including multiple isotropic scattering of any order. In the Paasschens solution, the density energy depends on two frequency dependent model parameters, the seismic albedo B_0, and the extinction length L_e. These two parameters can be expressed as a linear combination of Q_i and Q_s (see Formula 7 and 8 in Appendix).

In this study, we consider a dataset composed of 621 small magnitude earthquakes ($1.4 \leq M_L \leq 4.4$) recorded by a mixed (permanent and temporary) array during the 1997 Umbria-Marche seismic crisis (figure 1). The network included 15 temporary and eight permanent stations. Ten temporary stations consisted of MarsLite data loggers recording on 230 Mbyte optical disks, in continuous mode at 125 samples per second (blue triangles in figure 1); four of them were equipped with Lennartz LE-3D/5s (flat velocity response between 0.2 and 40 Hz) and six with Lennartz LE-3D/1s (flat velocity response between 1 and 40 Hz). Five temporary stations (red triangles in figure 1) consisted of RefTek 72-A07 data loggers equipped with Mark-L22-3D/1s (flat velocity response between 1 and 40 Hz). Permanent stations were managed by the RSM (Osservatorio Geofisico Sperimentale di Macerata) and RESIL (Regione Umbria) and recorded in continuous mode at 62.5 samples per second (squares and diamonds in figure 1). These stations consisted of MARS88/FD data loggers equipped with Mark L4C-3D seismometers (flat response between 1 and 40 Hz).

Of the available 621 earthquakes, 343 were used in a previous coda attenuation study (de Lorenzo et al., 2013a) for a total number of about 6500 three-component traces, spanning a source to
receiver distance approximately ranging from 5 km to 65 km. **First of all,** these data were corrected for the instrument transfer function.

Owing to the dependence of Q on frequency, the following four frequency bands were considered:

1 \leq f_c (Hz) \leq 2, \ 2 \leq f_c (Hz) \leq 4, \ 4 \leq f_c (Hz) \leq 8, \ 8 \leq f_c (Hz) \leq 16.

Signals were bandpass filtered in each frequency band using a four poles Butterworth filter, with cut-off frequencies at the extremes of any frequency band.

The MS (mean squared) envelope of each trace was preliminarily visualized (figure 2) in order to remove from the dataset those signals that are characterized by the presence of bumps in the considered time windows. As previously observed by de Lorenzo et al. (2013a), these bumps are mostly due to the time overlapping of the energy generated by two earthquakes that are separated in time of a quantity smaller than the total time window considered in the analysis. Since the maximum S-wave travel time is about equal to 20 s after the origin time and we used a total time window of 36 s, we discarded data having bumps in a window of 56 s after the origin time of the earthquake. After this analysis, the number of available three-component signals reduced to about 1800.

A further selection of data was carried out on the basis of the signal to noise ratio. We removed from the dataset all waveforms having an average signal $<S>$ to noise $<N>$ ratio less than 3, where $<S>$ was estimated by the average level of absolute amplitude of the coda normalization window, whereas $<N>$ was computed on a window preceding the P wave arrival. The results of this analysis are summarized in figure 3. We note that $<S>/<N>$ generally decreases with increasing frequency.

After this further selection of data, the number of available waveforms reduced to 384.

We then considered three consecutive time windows, having a width $\Delta t = 12$ s, starting from the S-wave arrival (figure 2) and a fourth window in the coda interval between 40 and 52 s from the origin time of the earthquake.

Since the shear waves are mostly pronounced onto the horizontal components, we considered only the two N-S and E-W components of the ground motion. In each time window, we finally...
calculated the time integral of the squared sum of the envelopes of the two horizontal components.

After correcting for geometrical spreading, we thus write:

\[E_k^{obs}(r_i) = \log_{10} \left(\int_0^{40} (A_E^2 + A_N^2) \, dt \right) \]

\[\int_0^{40} (A_E^2 + A_N^2) \, dt \]

where \(A_E \) and \(A_N \) are the velocity envelopes in the K-th window for the i-th waveform, of the east and north component, respectively.

The values \(E_k^{obs}(r_i) \) vs. \(r_i \) are shown in figure 4. The scatter of data is generally higher for the first considered time window, as observed in other tectonic areas (e.g. Del Pezzo et al., 2011). This effect is usually explained in terms of uncorrected radiation pattern effects; it is most important in the first time window, i.e. that following the S wave arrival, where the signal is dominated by the S-wave energy trapped around the recording site. For higher lapse times the signal is instead dominated by scattering effects, resulting in a smoother trend of observed data.

Following Del Pezzo et al. (2011), the fit of model to data was evaluated by computing the values of the following L2-norm misfit function:

\[M(L_1, B_0) = \sum_{i=1}^{N} \sum_{k=1}^{3} \left[E_k^{obs}(r_i) - E_k^{theo}(r_i, L_1, B_0) \right]^2 \]

over a regular grid of the two-dimensional \((L_1, B_0)\) parameter space. In equation (4), \(E_k^{theo}(r_i, L_1, B_0) \) is the theoretical normalized energy computed at the same distance \(r_i \) and in the same K-th time window of data. In our calculations, following Meirova and Pinsky (2014) we used a grid step for the extinction length \(\Delta L_1 = 0.001 \) km\(^{-1}\) in the range 0.003 \(\leq L_1 \leq 0.12 \) km\(^{-1}\) and a grid step for the seismic albedo \(\Delta B_0 = 0.01 \) in the range 0.05 \(\leq B_0 \leq 0.95 \). The minimum of the function (4) corresponds to the best fit values \(\hat{L}_1 \) and \(\hat{B}_0 \). The error estimates on the best fit values \(\hat{L}_1 \) and \(\hat{B}_0 \) were obtained by computing the isolines of the variable \(M_{Norm} = M(L_1, B_0) / M(\hat{L}_1, \hat{B}_0) \). It has been shown that \(M_{Norm} \) is a F-variable (e.g. Mayeda et al., 1992; Del Pezzo and Bianco, 2010a) with N-2 degree of freedom, where N is the number of available data. The model parameters having
a confidence level higher than a fixed threshold $F^* = 0.68$ are shown in figure 5. The estimate of model parameters and their errors are summarized in table II.

Q^{-1}_i and Q^{-1}_s are plotted vs. frequency in figure 6 and compared with the estimates of Q^{-1}_i and Q^{-1}_s previously obtained by de Lorenzo et al. (2013a). Smaller values of both intrinsic and scattering attenuation are inferred using MLTWA. The difference may be caused by the different assumptions of the two approaches. In particular, the assumption of a source co-located with the receiver (Sato, 1977), used in de Lorenzo et al. (2013a), could give rise to an overestimation of attenuation parameters, in that the source to receiver distances are maximized under this assumption.

In figure 7 we show most of the Q^{-1}_i and Q^{-1}_s MLTWA estimates, performed worldwide in the assumption of multiple scattering in half-space. It is worth noting that the Umbria-Marche region is characterized by one of the highest values of intrinsic attenuation, being Q^{-1}_i pattern with frequency in the upper bound of the values reported in figure 7. In de Lorenzo et al. (2013a) an equivalent results was found, by comparing the worldwide estimates obtained with the method described in Wennerberg (1993). Therefore, the present results confirm the interpretation in terms of pore fluid pressure affecting the inelastic properties of the crust. It has in fact been shown that intrinsic attenuation is the seismological attribute most sensitive to the physical state of the rocks and to fluid percolation (see e.g. de Lorenzo et al. (2001) and references therein). However, the thrust and fold belt representing the Apennine chain is characterized by small values of geothermal gradient (Mongelli et al., 2006) indicating that fluid percolation, from known deep sources (Miller et al., 2004; Chiodini et al., 2004), has to be responsible for the observed values of intrinsic attenuation.

MLTWA in a depth dependent model

Another point that has been addressed concerns the effect of the energy leakage caused by a transparent ($\eta_s = 0$) mantle (Margerin et al., 1998) on the inferred estimates of Q^{-1}_i and Q^{-1}_s. This is because the actual estimates of attenuation, obtained under the assumption of a homogeneous
half-space, could be overestimated with respect to a depth dependent model (Del Pezzo and Bianco, 2010b). To account for the energy leakage caused by the mantle, we computed the numerical energy density curves in a two layered medium (crust over mantle), using a Montecarlo method (Yoshimoto, 2000). Since the Moho is at a depth of about 35-45 km in the area (Piana Agostinetti et al., 2002; Di Stefano et al., 2009), in the numerical simulations we considered three different velocity models (Moho depth respectively of 35, 40 and 45 km). Following Del Pezzo and Bianco (2010b), in each of these three models, the velocity of S waves is gradually enhanced from the crustal value ($V_s=3.5\text{km/s}$) to the mantle value ($V_s=4.6\text{km/s}$) in a thin layer around the Moho (figure 8), but the depth at which this transition occurs is different for the three models (35, 40 and 45 km).

The numerical curves are then compared with the averaged MLTWA data, regularized by computing their average values and standard deviations in distance intervals of 5 km (Figure 9). To each data, a standard deviation equal to the average value of the standard deviations in each distance bin is associated.

In a first calculation, we assumed that the crust is characterized by the same Q_i^{-1} and Q_r^{-1} values inferred in the previous section under the assumption of a homogeneous half-space. Figure 9 shows the comparison of the numerical curves to data (solid colored lines and black points, respectively) in the case of a Moho located at 40 km of depth. The matching of the theoretical curves to data is quantified through the calculation of the significance level of a chi-square test. The results of a chi-square test indicate that the depth-dependent model satisfy the null hypothesis at a level of significance equal to 99% in the frequency band [1,2] Hz, that reduces to 0.2% in the frequency band [2,4] Hz and to 0.01 % in the frequency bands [4,8] Hz and [8-16] Hz. This indicates that only in the [1,2] Hz frequency band the Q_i^{-1} and Q_r^{-1} half-space estimates are not influenced by energy leakage in the mantle.

In a second calculation we evaluated how the crustal values of Q_i^{-1} and Q_r^{-1} have to be modified to obtain a good matching between model and data in the assumption of a transparent mantle. To this
aim, we carried out a trial and error approach, that was stopped when the theoretical curves matched
the data at a level of significance equal to 99 %. The results, obtained considering the three above
described velocity models, are summarized in table III. The numerical curves for a depth dependent
model that match the data are shown in figure 9 (red curves). The maximum difference between the
depth dependent Q_i^{v} and Q_i^{s} values and the homogeneous model estimates is of the order of about
25%. We can conclude that the influence of the coda energy leakage into the mantle is not dramatic,
in particular at low frequency. This result is probably the consequence of both the crustal thickening
in the Umbria-Marche region and the small depth of considered earthquakes (average depth 3.7
km). Therefore, in a continental crust where shallow earthquakes occur, small bias in the
attenuation estimates are obtained when considering a homogenous medium instead of a two-
layered medium.

PGA attenuation with distance

To evaluate how different Q estimates reflect differences in the prediction of ground motion in the
Umbria-Marche region, we simulate the peak ground acceleration for possible total-Q values taken
from measurements done using different approaches. We use three different estimates of Q reported
in Castro et al.(2002) (two of them achieved using the spectral decay method and the other using
the Q-coda method) and the present MLTWA estimate of total-Q for S-waves, all obtained using
similar data sets. The results are then compared with those found by Bindi et al. (2006), who report
empirically retrieved PGA and PGV attenuation-distance relationships for Umbria-Marche.

To simulate the PGA values as a function of distance we use the method first developed by Boore
(1983), in which the peak ground acceleration (PGA) (or the peak ground velocity, PGV) for a
given earthquake magnitude is estimated using the random vibration theory (see also Boore, 2003).
As described in Galluzzo et al.(2004), the present procedure is based on the Parseval–Plancherel
theorem, which relates the RMS of a time series to its power spectrum. From the velocity or
acceleration theoretical spectrum, corresponding to the Brune (1970) model, we calculate the RMS.
Then, we generate a set of \(N \) Gaussian distributed random numbers (\(N=2000 \)) with standard deviation, \(\sigma \), equal to RMS and take the maximum of this set as an estimate of the maximum acceleration (PGA). We used an Earth density of \(3.0 \times 10^3 \) kg/m\(^3\), a S-wave velocity of 3500 m/s, a stress drop value for the area under study equal to its average value \(\Delta \sigma = 7 \) MPa (de Lorenzo et al., 2010), a source with a seismic moment of \(3.5 \times 10^{16} \) Nm, corresponding to a \(M_L = 5.0 \) earthquake (equation 2), and a corner frequency, \(f_c \), equal to 0.8 Hz. Source duration, \(T_s \), was simply estimated by the inverse corner frequency. This parameter is crucial in the inference of PGA absolute value and should be empirically measured for the area under study, but in the present paper the actual aim is to compare the PGA pattern vs. distance obtained for different Q estimates, and not the absolute values. For the same above reason, we do not consider differences in the site attenuation at different distances, and arbitrarily chose a unique k-parameter (Anderson and Hough, 1984), setting it at 0.05 s, as previously inferred (Rovelli et al., 1998; Malagnini and Hermann, 2000). In Table IV the parameters used in the simulations are summarized.

We run the simulation for each attenuation relationship, for a set of source-receiver distance spanning a distance interval of 50 km. In figure 10 we plot the pattern of PGA values as a function of distance, together with their fit to the following relationships (see Kramer 1996, page 88 for a wide discussion on the empirical relationship describing peak acceleration decay with distance):

\[
\log[\text{PGA}] = a + b M + c M^2 + d R + f \log[R]
\] (5)

where \(a, b, c, d \) and \(f \) are parameters to be determined by the fit; \(M \) is the earthquake magnitude and \(R \) is the distance. As can be seen by the plots in figure 10, with increasing the source to receiver distance, the simulated PGA curves, obtained using different Q estimates, tend to assume different values. In particular the simulations marked with #1 and #3 (Q estimates of Castro et al., 2002) differ by the simulation marked with #2 (Castro et al. 2002). The simulation marked with #2 predicts a PGA pattern similar to those inferred using the four Q-values estimated in this paper with the MLTWA technique. The errors on the model parameters
obtained from the fit of equation 5 to simulated data are of the order of 10%, indicating that, with the exception of curves #1 and #3, the other curves are not statistically different. This indicates the importance of correctly choosing the proper measure of the quality factor for application purposes.

In the same plot, the empirical PGA vs. distance curve, determined by Bindi et al. (2006) for the same area, is reported for comparison. Despite the indetermination in the estimate of ground motion duration in the present approach, it matches most of the curves determined utilizing the Boore method with the attenuation parameters estimated in the present paper and the curves by Castro et al. (2002) [except curve #1 and #3 for increasing distances] in the distance range between 5 and 10 km. At shortest distances the curve by Bindi et al. (2006) slightly diverges from the pattern of PGA curves calculated using the Boore method. This (minor) effect can be due to the point source assumption implicit in the development of the present simulation with the Boore’s method and, possibly, in neglecting non linear or near field effects.

5 Concluding remarks

We have reviewed almost all the already obtained estimates of the seismic attenuation in the area of Central Italy (reported in Table I), and have applied the MLTWA technique to a large data set of local earthquakes in the same area in order to obtain a new estimate of intrinsic-and scattering-Q (Qi and Qs) from which a new estimate of total-Q, QT for S-waves has been inferred. For the sake of clarity, we note that QT obtained with MLTWA (table II) coincides with the direct total quality factor of S-waves Qβ measured with techniques different from MLTWA (see table I). The present result evidences that, in the studied area, the heterogeneities which generate the scattering phenomena play an important role in determining the attenuation of the seismic waves only at low frequency, below 2 Hz, while intrinsic dissipation prevails for frequencies higher than 2 Hz. The contrary occurs in volcanoes, where scattering phenomena prevail over the intrinsic dissipation in determining the attenuation of the seismic energy with distance. This is probably due to the high
amount of heterogeneities in the composition of volcanoes.

The bias introduced by the half space assumption has been tested with numerical simulations. Owing to the high crustal thickness combined with the shallowness of sources, the coda energy leakage into the mantle is not important, indicating that the MLTWA estimates obtained in the present paper can be usefully utilized for seismic risk purposes, in order to deduce the correct attenuation laws for the prediction of the seismic ground motion.

Appendix

The radiative transfer or transport equation is an integral equation whose analytical solutions in 3 dimensions are not already known. An approximate analytical solution in 3-D was found by Paasschens (1997) in case of uniform half-space (constant velocity and scattering coefficient). It describes the pattern of the seismogram energy envelope, $E[r, t]$, as a function of lapse time; and distance, r:

$$E[r, t] \approx \frac{W_0 \exp[-L_v^{-1}vt]}{4\pi^2 v^3} \left[t - \frac{r}{v} \right] +$$

$$W_0H \left[t - \frac{r}{v} \right] \left[\frac{1 - \frac{r^2}{v^2 t^2}}{4\pi v t} \right]^{\frac{1}{2}} \exp[-L_v^{-1}vt] F \left[vtB_0L_v^{-1}(1 - \frac{r^2}{v^2 t^2})^{3/4} \right]$$

(6)

where $F[x] = e^{x} \sqrt{1 + 2.026/x}, W_0$ is the energy at source; v is the wave speed in the half-space; H is the Heaviside function; δ is the Dirac’s delta, B_0 and L_{v}^{-1} represent respectively the seismic albedo and the extinction length inverse, expressed in terms of Q_T by:

$$B_0 = \frac{Q_T}{Q_s}$$

(7)

$$L_v^{-1} = \frac{2\pi f}{v} \left[\frac{1}{Q_s} + \frac{1}{Q_l} \right]$$

(8)
Figure captions

Figure 1. Geographic position of the seismic events and seismometers considered in this study.

Figure 2. An example of data processing. For both the EW and the NS component of a seismogram recorded at station CAS1 (a), the filtered signals in the 4-8 Hz range are computed (b). Of these signals the amplitude envelopes (c) and their squares (d) are computed. The density energy is computed on three 12 s time window of the signal representing the sum of the EW and NS squared envelopes (e).

Figure 3: Signal to noise ratio for the selected waveforms considered in this study, in the different frequency ranges. The grey line on each plot indicates the average value of <S/N> in each frequency band. Only data having <S/N>>3 are shown.

Figure 4. Plot of the normalized density energy vs. the source to receiver distance. Blue points refer to the first 12 s time window following the S wave arrival; red point refer to the second 12 s time window; green point refer to the third 12 s time window (see the text). Continuous line represent the theoretical best fit curves obtained in the assumption of homogenous half-space.

Figure 5. Confidence region of model parameters at a significance level 68%. Blue area indicate the regions of acceptability of the F-test. The red points represent the best fit solution in each frequency band.

Figure 6. Comparison between Q_i^{-1} and Q_s^{-1} estimated in this study and their estimates with the Wennerberg (1993) method obtained by de Lorenzo et al. (2013).

Figure 7. Worldwide estimates of Q_i^{-1} and Q_s^{-1}. The colored symbols represents values of different Italian regions.

Figure 8. V_S velocity and scattering attenuation profiles used in the simulation with a depth-dependent attenuation model. Note that the scattering attenuation profiles are normalized by their crustal values, $\eta_{S,c}$.

Figure 9. Fit to MLTWA data of the homogeneous (solid grey lines) and the depth dependent
attenuation model (blue and red solid lines). The chi-square values reported in each box refers to the uncorrected depth dependent model (see text, for more explanations).

Figure 10. Pattern of PGA (simulated with the Boore’s method) as a function of distance for different choices of attenuation parameters according to the following scheme:

1) \(Q[f] = 18 \cdot f^2 \) in the range \{1 - 10 Hz\}; \(Q[f] = 990 \) for frequencies higher than 10 Hz (Spectral ratio method, Castro et al. 2002)

2) \(Q[f] = 34 \cdot f^{1.3} \) (Spectral ratio method, Castro et al. 2002)

3) \(Qc[f] = 77 \cdot f^{0.6} \) (Q-coda method, Castro et al. 2002)

4) \(Q[f] = 25 \cdot f^{1.3} \) (MLTWA method, this paper, Half Space)

5) \(Q[f] = 25 \cdot f^{1.3} \) (MLTWA method, this paper, Moho Depth at 45 km)

6) \(Q[f] = 25 \cdot f^{1.3} \) (MLTWA method, this paper, Moho Depth at 40 km)

7) \(Q[f] = 25 \cdot f^{1.4} \) (MLTWA method, this paper, Moho Depth at 35 km)

Dashed black line is the empirical PGA-distance attenuation curve estimated by Bindi et al. (2006).

Table captions

Table I: Summary of previous attenuation studies in the Umbria-Marche region

Table II: MLTWA model parameter estimates in the half-space assumption

Table III: Results of the trial and error approach for the estimation of the attenuation parameters in the three considered depth dependent models. Results correspond to a level of significance of the \(\chi^2 \)-square test equal to 99%.

Table IV: Model parameters used in the simulations of the PGA values
References

de Lorenzo, S., Zollo, A., & Mongelli, F., 2001. Source parameters and three dimensional attenuation structure from the inversion of micro earthquake pulse width data: Qp imaging and
inferences on the thermal state of the Campi Flegrei caldera (southern Italy), *J. Geophys. Res.*, 106(B8), 16265–16286.

Meirova, T. & Pinsky, V., 2014. Seismic wave attenuation in Israel region estimated from the multiple lapse time window analysis and S-wave coda decay rate, Geophys. J.Int., 197, 581-590,

Yoshimoto, K., 2000. Monte Carlo simulation of seismogram envelopes in scattering media, J.
Figure 1
Envelopes and squared envelopes of filtered seismograms for different components:

- **Component E**
 - Filtered: 4-8 Hz
 - Envelope $A_{\text{max}} = 7.9 \times 10^6 \, \mu \text{cm/s}$
 - Squared envelope $A_{\text{max}} = 6.25 \times 10^{13} \, (\mu \text{cm/s})^2$

- **Component N**
 - Filtered: 4-8 Hz
 - Envelope $A_{\text{max}} = 1.3 \times 10^7 \, \mu \text{cm/s}$
 - Squared envelope $A_{\text{max}} = 1.69 \times 10^{14} \, (\mu \text{cm/s})^2$

- **Sum of E and N squared envelopes**
 - $A_{\text{max}} = 1.86 \times 10^{14} \, (\mu \text{cm/s})^2$

Additional information:

- **A0 = 1.58 \times 10^7 \, \mu \text{cm/s}^2**
- **Amax = 7.8 \times 10^6 \, \mu \text{cm/s}$$
- **A = 7.9 \times 10^6 \, \mu \text{cm/s}$$
- **A = 6.25 \times 10^{13} \, (\mu \text{cm/s})^2$$
- **A = 1.88 \times 10^7 \, \mu \text{cm/s}$$
- **A = 1.24 \times 10^7 \, \mu \text{cm/s}$$
- **A = 1.30 \times 10^7 \, \mu \text{cm/s}$$
- **A = 1.69 \times 10^{14} \, (\mu \text{cm/s})^2$$

October 19, 1997, 16:00:17.83, Distance = 32 km, Magnitude Ml = 4.4
Figure 3

The figures show the signal-to-noise ratio (S/N) for different frequency bands:

1. **1-2 Hz**
 - The data points are scattered across the frequency spectrum with a notable concentration around the S/N ratio of 1.

2. **2-4 Hz**
 - Similar to the 1-2 Hz band, with a concentration around the S/N ratio of 1.

3. **4-8 Hz**
 - The data points are more spread out compared to the lower frequency bands, with a notable concentration around the S/N ratio of 10.

4. **8-16 Hz**
 - The data points are less dense compared to the lower frequency bands, with a concentration around the S/N ratio of 100.

The x-axis represents the id # of data, and the y-axis represents the S/N ratio on a logarithmic scale.
Figure 4

1-2Hz

\[B_0 = 0.66 \]
\[L_e = 12.2 \text{ km} \]

2-4Hz

\[B_0 = 0.28 \]
\[L_e = 25.6 \text{ km} \]

4-8Hz

\[B_0 = 0.14 \]
\[L_e = 27 \text{ km} \]

8-16Hz

\[B_0 = 0.12 \]
\[L_e = 22.2 \text{ km} \]

Log normalized energy integral vs. source-receiver distance (km)
Figure 5

Le$^{-1}$ (km$^{-1}$)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 Hz</td>
<td></td>
</tr>
<tr>
<td>2-4 Hz</td>
<td></td>
</tr>
<tr>
<td>4-8 Hz</td>
<td></td>
</tr>
<tr>
<td>8-16 Hz</td>
<td></td>
</tr>
</tbody>
</table>

B$_0$
Figure 6

The graph shows the frequency (Hz) on the x-axis and the inverse quality factor (Q^{-1}) on the y-axis. Three different datasets are plotted:

1. Q_i^{-1} Wennerberg (dashed red line)
2. Q_i^{-1} MLTWA (solid red line)
3. Q_s^{-1} Wennerberg (dotted blue line)
4. Q_s^{-1} MLTWA (solid blue line)

The error bars indicate the uncertainty in the measurements at each frequency point.
North-Central Italy (Del Pezzo et al., 2011)
Friuli, North-East Italy (Bianco et al., 2005)
Umbria Marche-halffspace, Central Italy (this study)
Umbria Marche-crust over mantle, Central Italy (this study)
Southern Apennines, Italy (Bianco et al., 2002)
Messina Straits, Italy (Tuve et al., 2006)
South-East Sicily, Italy (Giampresti et al., 2006)
Central California (Mayeda et al., 1992)
Long Valley (Mayeda et al., 1992)
Hawaii Big Island (Mayeda et al., 1992)
Kamchatka, Russia (Abubakirov, 2005)
West Greece (Tselentis, 1998)
Andes Crustal (Badi et al., 2009)
Andes Mantle (Badi et al., 2009)
Klyuchevskoi Volcano, Russia (Lemzakov, 2008)
Garwhal Himalaya, India (Mukhopadhyay et al., 2010)
West India (Ugade et al., 2007)
Galeras Volcano, Colombia (Ugade et al., 2010)
Kanto District, Japan (Yoshimoto & Okada, 2009)
MiFuji-km60, Japan (Chung et al., 2009)
MiFuji-km80, Japan (Chung et al., 2009)
MiFuji-km100, Japan (Chung et al., 2009)
North Anatolia, Turkey (Akinaci & Aydogan, 2000)
North-West Turkey (Bindi et al., 2006)
Kamchatka, Russia (Abubakirov, 2007)
North-East Venezuela (Ugade et al., 1998)
Colombia, BAR (Vargas et al., 2004)
Colombia, BET (Vargas et al., 2004)
Colombia, CHI (Vargas et al., 2004)
Colombia, CRIU (Vargas et al., 2004)
Colombia, HEL (Vargas et al., 2004)
Colombia, MUN (Vargas et al., 2004)
Colombia, NOR (Vargas et al., 2004)
Colombia, PRA (Vargas et al., 2004)
Colombia, ROS (Vargas et al., 2004)
Colombia, TLS (Vargas et al., 2004)
Southern California, SCS (Jin et al., 1994)
Southern California, ISA (Jin et al., 1994)
Southern California, PAS (Jin et al., 1994)
Southern California, PFO (Jin et al., 1994)
Southern California, SVD (Jin et al., 1994)
Southern Spain, Long-Distance (Akinaci et al., 1995)
Southern Spain, Short-Distance (Akinaci et al., 1995)
West Anatolia, Long-Distance (Akinaci et al., 1995)
West Anatolia, Short-Distance (Akinaci et al., 1995)
South-Central Alaska (Dutta et al., 2004)
South Netherlands (Outbeek et al., 2004)
West Anatolia (Sahin et al., 2007)
South Korea (Lee et al., 2010)
Israel (Meirov & Pinsky, 2014)
Chamoli Earthquake (Mukhopadhyay et al., 2014)
Iwate Earthquake, Japan (Sawazaki & Enescu, 2014)
North-East India (Padhy and Subhadra, 2013)
Figure 8
$\log_{10}[\text{PGA (m/s}^2\text{)]}$

- Bindi et al
- Castro et al_1
- Castro et al_2
- Castro et al_3
- MLTWA_half Space_4
- MLTWA_Moho 45 km_5
- MLTWA_Moho 40 km_6
- MLTWA_Moho 35 km_7

Source-Receiver Distance (m)
Table I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$f(Hz)$</td>
<td>Q_β</td>
<td>$Q_\alpha^{(*)}$</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>40</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>74</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>142</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>246</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>330</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>469</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>500</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>803</td>
<td>64</td>
</tr>
<tr>
<td>Rovelli et al. (1988)</td>
<td>$Q_\beta(f) = 100(f/f_0)^3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malagnini and Herrmann (2000)</td>
<td>$Q_\beta(f) = 130(f/f_0)^{0.1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castro et al. (2002)</td>
<td>$Q_\beta(f) = 18(f/f_0)^2$ 1<f<10Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Q_\beta(f) = 900 f\cdot$10Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Q_\beta(f) = 34(f/f_0)^{1.3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Q_\beta(f) = 77(f/f_0)^{0.6}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bindi et al. (2004)</td>
<td>$Q_\beta(f) = 49(f/f_0)^{0.9}$ 0.5<f<8Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Q_\beta(f) = 318 f > 8Hz$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$Q_\beta(f) = Q_\alpha f(f/f_0)^n$

$Q_\beta(f) = Q_\alpha f(f/f_0)^n$

$Q_\alpha(f) = Q_\alpha f(f/f_0)^n$

$Q_\alpha(f) = Q_\alpha f(f/f_0)^n$
<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>rms</th>
<th>B_0</th>
<th>δB_0 (km$^{-1}$)</th>
<th>δL (km$^{-1}$)</th>
<th>Q_i</th>
<th>δQ_i</th>
<th>Q_s</th>
<th>δQ_s</th>
<th>Q_t</th>
<th>δQ_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>42.5</td>
<td>0.66</td>
<td>0.07</td>
<td>0.082</td>
<td>0.023</td>
<td>1.04E-02</td>
<td>3.00E-03</td>
<td>2.01E-02</td>
<td>6.00E-03</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>59.2</td>
<td>0.28</td>
<td>0.1</td>
<td>0.039</td>
<td>0.01</td>
<td>5.21E-03</td>
<td>2.00E-03</td>
<td>2.03E-03</td>
<td>9.00E-04</td>
<td>138</td>
</tr>
<tr>
<td>6</td>
<td>59.8</td>
<td>0.14</td>
<td>0.05</td>
<td>0.037</td>
<td>0.005</td>
<td>2.95E-03</td>
<td>4.00E-04</td>
<td>4.81E-04</td>
<td>2.00E-04</td>
<td>291</td>
</tr>
<tr>
<td>12</td>
<td>78.2</td>
<td>0.12</td>
<td>0.05</td>
<td>0.045</td>
<td>0.006</td>
<td>1.84E-03</td>
<td>3.00E-04</td>
<td>2.51E-04</td>
<td>1.00E-04</td>
<td>478</td>
</tr>
</tbody>
</table>
Table III

<table>
<thead>
<tr>
<th>Model</th>
<th>Band pass 1-2Hz</th>
<th>Band pass 2-4Hz</th>
<th>Band pass 4-8Hz</th>
<th>Band pass 8-16Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_i</td>
<td>Q_s</td>
<td>B_0</td>
<td>L_0^{-1} (km$^{-1}$)</td>
</tr>
<tr>
<td>halfspace</td>
<td>97</td>
<td>50</td>
<td>0.66</td>
<td>8.20E-02</td>
</tr>
<tr>
<td>45km Moho depth</td>
<td>97</td>
<td>50</td>
<td>0.66</td>
<td>8.20E-02</td>
</tr>
<tr>
<td>40km Moho depth</td>
<td>97</td>
<td>50</td>
<td>0.66</td>
<td>8.20E-02</td>
</tr>
<tr>
<td>35km Moho depth</td>
<td>97</td>
<td>50</td>
<td>0.66</td>
<td>8.20E-02</td>
</tr>
<tr>
<td>halfspace</td>
<td>339</td>
<td>2079</td>
<td>0.14</td>
<td>3.70E-02</td>
</tr>
<tr>
<td>45km Moho depth</td>
<td>421</td>
<td>1683</td>
<td>0.2</td>
<td>3.20E-02</td>
</tr>
<tr>
<td>40km Moho depth</td>
<td>445</td>
<td>1579</td>
<td>0.22</td>
<td>3.10E-02</td>
</tr>
<tr>
<td>35km Moho depth</td>
<td>466</td>
<td>1561</td>
<td>0.23</td>
<td>3.00E-02</td>
</tr>
<tr>
<td>Seismic Moment M_0 (N·m)</td>
<td>Magnitude M_L</td>
<td>Stress-Drop $\Delta \sigma$ (Pa)</td>
<td>Spectral decay parameter k (s)</td>
<td>Corner frequency f_c (Hz)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$3.5 \cdot 10^{16}$</td>
<td>5.0</td>
<td>$7 \cdot 10^6$</td>
<td>0.05</td>
<td>0.8</td>
</tr>
</tbody>
</table>