


















velocity model were chosen to account for the present
day knowledge of  the crust in the area (Figure 12):

a) two homogeneous velocity models (VP = 4.5
km/s and VP = 5.5 km/s).

b) three velocity models characterized by three dif-
ferent constant velocity gradients.

c) The velocity model used by the Nation Institute
of  Geophysics and Volcanology (INGV) to compile the
instrumental catalogue of  Italian earthquakes [Gruppo
di lavoro CSTI 2001].

d) The model of  Costa et al. [1993], that was in-
ferred after a zoning of  the Italian territory.

e) A regional velocity model of  the Apulian plate
[Venisti et al. 2005].

f ) The three-layer velocity model described in the
previous section (named hypo71).

Both the two homogeneous velocity models and
the three gradient velocity models were chosen on the
basis of  the available values of  the seismic velocities of
the upper crust in the Gargano promontory, by taking
into account the well known heterogeneity of  the crust
at a local scale in the area [e.g., Festa et al. 2013].

In each inversion process (i.e., for each starting ve-
locity model) we followed the guidelines prescribed by
Kissling et al. [1994], by using different damping coeffi-
cients for hypocenter parameters and velocity model.
The inversion steps can be briefly summarized as it fol-
lows. In a first step, we used a damping coefficient 0.01
for hypocenter parameters and a damping coefficient
0.1 for the velocity model. In this step, we jointly inferred
all the parameters several times, by updating the start-
ing velocity model with the computed velocity model.
After the relocation of  the events, we performed a fur-
ther inversion step, using a damping of  0.01 for the
hypocenters and 1.0 for the velocity model, with the
aim of  finding the velocity model that minimizes the
total estimated location error [e.g., Kissling et al. 1994].
We do not allowed the presence of  low velocity layers
in the inversion. In fact, after several preliminary trials,
we deduced that the use of  low velocity layers gives rise
to unstable solutions, as often described in literature
[e.g., Kissling et al. 1994, Matrullo et al. 2013].

The nine inferred velocity model are summarized
in Figure 13a. With the exception of  the velocity model
of  Costa et al. [1993], which gave rise to a higher final
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Figure 12. The nine starting Vp velocity models used in the lin-
earized inversions.

Figure 13. (a) The nine inverted 1D velocity models; (b) the minimum (blue line) 1D velocity model. Red lines represent the error bounds.
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RMS (0.43 s), the adherence of  model to data is com-
parable for the remaining eight velocity models (RMS
of  the order of  0.38 s). Therefore the averaged 1D ve-
locity model was computed using only these eight
models (Figure 13b).

7. Discussion and conclusion
The events were relocated using the average min-

imum 1D model (Figure 14). The most part of  the events
occurs in the Gargano area. In this area, the event dis-
tribution is rather spread, even if  a higher number of
events is located between San Giovanni Rotondo, Monte
Sant’Angelo and Manfredonia. Therefore, the position
of  the epicenters confirms that the seismic activity is
mainly related to the tectonic activity in the shear zone
that comprises the Mattinata Fault and the Apricena
Fault and some minor lineaments, as found in previous
studies [Di Bucci and Angeloni 2013].

The events tend to concentrate until to a depth of
about 30 km (Figure 14). Moreover, in the three-layer ve-
locity model (Figure 10) VP abruptly increases to 7.3 km/s
at a depth of  about 27-30 km. These two results seem in-
dicate that the Moho is located at a depth of  about 27-30
km, as previously inferred in a teleseismic receiver func-
tion analysis [Piana Agostinetti and Amato 2009]. 

Moreover, we note the similarity of  VP/VS value in-
ferred from the grid search technique (VP/VS=1.81 for
the half-space model in Figure 8) with the value in-
ferred from the Chatelain [1978] method for the whole
dataset (VP/VS=1.82 in Figure 11). These values are in
close agreement with the results obtained by Piana
Agostinetti and Amato [2009] and may indicate that the
crust, in the Gargano area, is characterized by a mod-
erate fluid content. If  we compare this value with the

average VP/VS =1.89 [Chiarabba and
Amato 2003] of  the near Umbria-
Marche Apennine, we conclude that
the Gargano promontory is character-
ized by a minor fluid content, that
could be indicative of  a minor degree
of  fracturing of  the crust.

The errors on source parameters
were computed using two different ap-
proaches. First, we estimated the for-
mal errors on horizontal and vertical
coordinates of  the event foci using
Hypo71 (Figure 15a). A further calcu-
lation (Figure 15b) was made by con-
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Figure 14. Position of  the earthquake foci in the minimum 1D velocity model.



sidering the difference between the coordinates of  the
events as computed in the average minimum 1D model
and in the inverted model that corresponds to the mini-
mum R.M.S. The histograms representing the two dif-
ferent error estimates (Figure 15) are quite similar and
indicate that the hypocenter location is well con-
strained by the retrieved 1D VP model for about one-

half  of  the studied events, with errors on horizontal
and vertical coordinates less than 2.5 km.

The residuals among observed and theoretical
travel times, for both the three-layer velocity model and
the average minimum 1D VP model are reported in Fig-
ure 16. A significant variance reduction is obtained
using the 1D model with respect to the previously in-
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Figure 15. Errors on earthquake locations. (a) Error estimates using Hypo71. (b) Errors estimated as the distance between the localizations
of  the events in the minimum 1D velocity model and in the minimum R.M.S. velocity model.

Figure 16. Plot of  residuals between observed and theoretical travel times. Orange points refer to the three-layer velocity model; blue points
refer to the minimum 1D velocity model.
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ferred three-layer model (30 % of  RMS reduction). An
average total residual of  0.36 s is inferred in the 1D VP

model, that reduces to 0.24 s for the data recorded by
the OTRIONS network (Table 3).

The small number of  events considered in this
study does not allow us to image the geometry of  the
active faults. This objective will require the further
analysis of  the about one thousand events further
recorded by the OTRIONS network in the period from
May 2013 to March 2014. The analysis of  these events
is still in progress and could help us to better constrain
the elastic properties of  the crust in a future study.

As final consideration we note that the use of  a
local scale array in a region of  apparently moderate
seismicity allows the detection of  very small magnitude
(minimum ML=0.3) events, that are extremely impor-
tant to better extend the range of  completeness of  seis-
mic catalogues and therefore in the evaluation of  the
seismic hazard of  an area. Even if  the magnitude of  the
events has been computed using Equation (1), a further
study has to be carried out to calibrate a magnitude re-
lationship for the Gargano area, as it has been done for
the southern Italy [Bobbio et al. 2009]
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