Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

Andrea Borgia*, Alberto Mazzoldi†§, Carlo Alberto Brunori†,
Carmine Allocca†, Carlo Delcroix*,
Luigi Micheli‡.
Alberto Vercellino§, Giovanni Grieco†,

*EDRA, via di Fioranello 31, 00134 Roma, Italia.
§UMSNH-IIM, Instituto de Investigaciones en Ciencias de la Tierra, Edif. "U"
Ciudad Universitaria CP 58060, Morelia, Mich., México
*Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605, Roma,
00143 Italia.
§Regione Toscana, via di Novoli 26, Firenze, 50127 Italia.
†Dipartimento di Scienze della Terra, Università degli Studi di Milano, via Botticelli
23, Milano, 20133 Italia.

Corresponding author: Andrea Borgia, email: aborgia@lbl.gov

28 July 2014
Accepted by Journal of Volcanology and Geothermal Research
Abstract

We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load.

We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process.

Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays’ exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh-water aquifer) and the rocks of the geothermal field, constitute ideal pathways for water recharge during vapour extraction for geothermal energy production. We think that volcanic spreading could maintain faults in a critically stressed state, facilitating the occurrence of induced and triggered seismicity.

Keywords
Amiata volcano; geology; structure; volcanic spreading; spreading model; geothermal traps formation.

1.0 Introduction

Spreading of volcanic edifices built on weak substratum is a well documented process (Borgia et al., 2000a). Numerous papers study this type of deformation, which is observed in the field (see for instance: van Bemmelen, 1949; Borgia et al., 1992; Merle et al., 1993; Merle et al., 1996; van Wyk De Vries and Borgia, 1996; Acocella et al., 2000; Neri et al., 2004; Rovida and Tibaldi, 2005; Mathieu and van Wyk De Vries, 2009) or measured via ground, air or space instruments (cf. Borgia et al., 2000b; Borgia et al., 2005; Solaro et al., 2010), or using analogue (cf. Merle and Vendeville, 1995; Merle and Borgia, 1996; van Wyk De Vries and Merle, 1996 and 1998; Acocella and Mulugeta, 2000; Wooller et al., 2004; Girard and van Wyk De Vries, 2005; Norini and Lagmay, 2005; Merle et al., 2006; Lagmay and Valdivia, 2006; Delcamp et al., 2008; Holohan et al., 2008; Le Corvec and Walter, 2009), numerical (cf. Borgia, 1994; van Wyk De Vries and Matela, 1997) or analytic (cf. Borgia et al., 2005; Borgia and Murray, 2010; Gudmunson, 2009; McGovern and Morgan, 2009; Plattern et al., 2013) experiments. To the best of our knowledge no work has been done on the structural consequences that spreading has on the development of geothermal fields associated with volcanic centres undergoing this process and on the feedback that geothermal fields can have on spreading.

We anticipate from the conclusions that volcanic spreading may creates heat-traps around the periphery of volcanoes and allowing efficient water recharge through extensional faulting of the edifices. In turn, the heat advected by the hydrothermal system may weaken the strength of rocks below the volcano facilitating spreading.

Amiata Volcano, located in southern Tuscany, Italy (Fig. 1), is an ideal example for the study of this process. On the one hand, the effects of volcanic spreading are quite evident, on the other, because of the largely exploited geothermal fields, the underground structures are particularly well defined.
After analysing in detail the volcanic succession, we describe the structural geology of Amiata Volcano focusing on the spreading process; then, we present a numerical solution of an analytic model for volcanic spreading of the Amiata edifice and, finally, we elaborate on the interactions between volcanic spreading and generation of geothermal fields.

2.0 Geology of the Amiata Volcano area

Detailed descriptions of the regional geology of the Amiata Volcano area may be found in Brogi (2008) and references therein and in the 1:10,000 Geologic Map of Amiata Volcano by Regione Toscana (2006-2009). Our survey has been limited to Amiata Volcano and the area around its periphery (Fig. 2). In brief, from Cretaceous to Oligocene, during the Apennine convergent orogenic tectonics, the Ligurian Units were thrust on top of the Sub-Ligurian Units (oldest-on-top-of-youngest); both of them were subsequently stacked on top of the Tuscan Units during Oligocene-Early Miocene. Post-collisional extensional tectonics, from Middle Miocene to Present, produced the collapse and thinning of the lithosphere and of the over-thickened crust associated with emplacement of plutons, uplift and, finally, during the Quaternary volcanic activity.

2.1 Stratigraphy

Brogi (2008), Regione Toscana (2006-2009) and references therein describe from bottom upward the following stratigraphic units in the Amiata Volcano area (Fig. 3):

a) The Paleozoic Gneiss upper crustal Complex (GC) is the lowermost known unit.

b) The Tuscan-Units Metamorphic Complex (TMC) is found only in boreholes and in xenoliths within the Mt. Amiata lavas. Locally this Complex is constituted of the very-low-grade metamorphic Monticiano-Roccastrada Units of Devonian-to-Triassic age that is further subdivided in three levels: the Micaschists Group (MS-TMC), Phyllite-Quartzite Group (PQ-TMC) and the Verrucano Group (VE-TMC).

c) The Tuscan Units (TU) is related to the Late Triassic-Early Miocene sedimentary cover of the Adria continental paleo-margin. The Late-Triassic evaporites, the Anidriti of Burano (AB-TU), formed the detachment above which the Tuscan Units were thrust over the outer paleogeographic domain during Late Oligocene-
Early Miocene. Above the evaporites, the rocks are mainly carbonates and
turbiditic units (LT-TU2).

d) The Subligurian Units (SL) of Eocene to Oligocene age are a sedimentary
domain interposed between the Tuscan and Ligurian domains and are locally
represented by the Canetolo Sandstone (CA-SL).

e) The Ligurian Complex, of Middle Jurassic to Early Cretaceous age
is composed of remnants of the oceanic basement and its sedimentary cover and is subdivided
in External Ligurids (EL) – including Argille Varicolori (AV-EL), Santa Fiora
Unit (SF-EL), and Pietraforte (PF-EL) of Early Cretaceous to Eocene age –, and
Internal Ligurids (IL) – composed by the ophiolitic olistostrome of the Argille a
Palombini Formation (AP-IL) of Cretaceous age.

f) The Pleistocene Intrusive Complex (IC) is constituted by the intrusive rocks that
form the Mount Amiata magma chamber and the Selagites (SE) that are
constituted by lamprophires, minettes, spessartites, componites, lamproites, etc.
(Regione Toscana 2006-2009).

The Mt. Amiata Volcanic Complex (VC; also surveyed in this work), is
constituted by at least 16 morphologically-distinct lava-flow units of dacitic,
rhyodacitic and olivine-latitic composition. The lavas, erupted 300-200 ka B.P.,
contain mafic enclaves (Ferrari et al., 1996; Cadoux and Pinti, 2009).

h) Miocene-to-Quaternary marine and continental sediments (M-P-Q) include
alluvial (al) and travertine (tr) deposits.

Detailed cross-sections of Amiata mines (Ref. AAVV, 1971) combined with a large
number of boreholes (Archives of AVAM) show that the Amiata volcanic units are,
on its eastern side, in direct contact with the calcareous sequence of the Tuscan Units
(Fig. 4a), a fact that apparently was neglected in the recent literature (cf. Doveri et al.,
2012). Because the Tuscan Units have high secondary permeability – they are highly
tectonized –, they constitute (in addition to faulting and volcanic conduits)
preferential pathways for the interaction between freshwater and geothermal fluids.

Using aerial photographs, the newly-produced geologic map of the Amiata Volcanic
area (Regione Toscana, 2006-2009) and extensive field controls (Delcroix et al.,
2006; this work) we carried out a detailed reconstruction of individual Amiata
Volcano lava domes, coulees and flows and of the sedimentary volcanic basement
cropping out in the surrounding area (Fig. 2). The reconstruction of lava units is more reliable for the younger flows, while it has a larger degree of error for the older ones, where the gravitational deformation has been so extensive that, apart from a few cases, it is now difficult to indicate their flow directions, extent and source as these older flows are also indistinguishable in geochemistry, mineralogy or age (Ferrari et al., 1996).

Lava domes are frequently stratified, indicating subsequent eruptive pulses in their formation (exogenous domes). Some flows are un-rooted and appear to have originated from lava fountains or strombolian activity that accumulated large cones of hot-lava debris, part of which, in turn, flowed downward or collapsed, possibly giving rise to hot-avalanches. Using the superposition criteria, we have detailed the volcanic stratigraphy, reconstructing a preliminary time succession of 16 flow units that form the complete life of the volcano. These volcanic units have been dated at 0.3 and 0.2 Ma BP (Ferrari et al., 1996; Cadoux and Pinti, 2009, and references therein), although the surface blocky morphology of the youngest flow, practically lacking soil cover, suggests a much younger age.

Tephra layers are practically absent from the sequence at Amiata volcano. This fact is at odds with all the other volcanoes of the Latium-Campanian volcanic chain, which show extensive deposits formed by ultra-Plinian, Plinian, and sub-Plinian eruptions. A number of depressions, bound by normal faults and/or by back-sloping lavas have allowed the formation Lacustrine deposits (“lac” in Fig. 2), often constituted by diatomites, iron oxides and amorphous silica (De Castro, 1914; Pompei, 1924; Fig. 4b).

2.2 Structure

2.2.1 Compressional and extensional tectonics

Brogi (2008) and references therein report that during orogeny, from Cretaceous to Early Miocene, the Tuscan Units became intersected by major E-verging thrust faults accompanied by a set of recumbent folds having N-S fold axes. A second set of asymmetric, overturned, E-SE-verging folds with axial planes that dip NW were formed during Early(?)-Middle Miocene. Low-angle, N-S-trending, E-dipping, normal faults delaminated the former stacked Units during Middle and Upper
Miocene, producing strong variations in their thicknesses. At the base of the Tuscan Units, these normal faults flatten out in a decollement constituted by the Triassic Burano Anhydrites. Additional clayey-rich detachment layers are found between the Tuscan and the Sub-Ligurian Units, the Sub-Ligurian and the Ligurian Units, and also within the Ligurian Units themselves (Fig. 3). A younger set of Early Pliocene to Quaternary, steeply dipping, NNW-SSE and ENE-WSW striking normal faults dissect the older structures in the Amiata Volcano area. Where observable, these faults frequently show both left-lateral and right-lateral component of slip, but they were ultimately reactivated as normal faults particularly in proximity of Amiata Volcano (Brogi and Fabbrini, 2009). It appears that this normal faulting occurred during the Pliocene intrusive activity and the associated gravimetric adjustments of the volcanic products (Brogi and Fabbrini, 2009). The ENE-WSW striking normal fault is the one that focused volcanic activity at Amiata.

Baietto et al. (2008), through detailed analyses of structural stations both on Amiata Volcano and on the neighbouring outcrops, found that the area is characterized by strike-slip faulting younger than the emplacement of the volcanic rocks (<2*10^5 a BP). Main transtensional faults through the volcano strike E-W and have a right-lateral sense of shear, whereas in the northeastern sector NE-SW striking transtensional faults have left-lateral sense of shear. Normal faults trend NW-SE; southwest away from the edifice of Amiata these faults have down-throws to the SW, while NE of Amiata they have down-throws to the E.

Brogi et al. (2010) suggest that the above-mentioned ENE-WSW-striking normal fault cutting the volcano is a left-lateral strike-slip fault that cuts through the volcano and its substratum, extending also to the NE and SW away from it. In the NE area right-lateral strike-slip faults are interpreted to form a step-over releasing-band of the main left lateral strike-slip faults; in addition, the mutual overlap of transtensional and near normal kinematic indicators, often observed on the shear surfaces, suggests reactivation of the pre-existing fault planes in an extensional context. In the SW, the SW-NE left lateral fault divides two domains: the northern one characterized by normal faults, and the southern one by right-lateral faults at low angle with the master left-lateral fault. Within the volcano the examined mesostructures are minor faults.
with associated joints and few kinematic indicators (rare mechanic striations, lunate structures, and pinnate joints probably associated with shear fractures).

We observed that the left- versus right-lateral strike-slip kinematic indicators presented in the former papers (Brogi, 2008; Baietto et al., 2008, Brogi et al., 2010), appear to be in contrast with each other if related to regional tectonics. In the NE the proposed left-lateral strike-slip fault in the travertine is a pure extensional fracture probably related to sagging and slumping of the travertine over the underlying shaley Ligurid Units (Fig. 5). In the SW the proposed normal faulting may be more reasonably interpreted as a NW-SE series of faults related to diapirism that involves the basal lava flows of Amiata (cf. also Betz, 1962).

In addition, we believe that the striations and kinematic indicators found on fault planes within the Amiata Volcano lavas could receive different explanations from the one reported in the cited papers. In fact, both, the mechanism of lava flow emplacement (Fink, 1980; Leat and Schminke, 1993; Linneman and Borgia 1993; Tibaldi, 1996) and volcanic spreading (Monaco et al., 1997; Solaro et al., 2010) can create a wide range of structures that are identical to those created by regional strike-slip tectonics and that can extend well beyond the volcanic products (see for instance Borgia et al., 1992; Borgia and van Wyk De Vries, 2003, Solaro et al., 2010).

Actually, on volcanoes, the most reliable kinematic indicators are the offsets of the isochrone surfaces identified by individual flows. These are the indicators we have used for our structural mapping.

We do not claim, though, that strike-slip regional components to the spreading process is absent for sure. In fact, some morphologic features along the volcanic axis could suggest the existence of small regional components of shear (perhaps right lateral), overprinting the general spreading process (cf. Lagmay and Valdivia, 2006).

Future work will attempt at verifying this thesis.

2.2.2 Regional intrusion, uplift and volcanism

Acocella (2000) and references therein point out that the rapid Quaternary uplift and the bedding orientation of the Pliocene sediments define a broad regional dome,
centered on the Mt. Amiata Volcano, which was generated after the emplacement of an intrusive body at depth. This intrusion is thought to be responsible for the Middle-Quaternary volcanic activity.

Batini et al. (2003) indicate that a seismic horizon (K-horizon) exists at depth. It has an antiformal structure elongated NE-SW, parallel to the volcano axis, from 4 km b.s.l under the volcano, to about 8 km b.s.l. at a distance of about 10 km NW and SE from it. This horizon is interpreted to be an active shear-zone with high fluid-pore pressure, located at the brittle-ductile transition (Gianelli et al., 1997; Liotta and Ranalli, 1999). Brogi (2008) shows that the K-horizon is mimicked by the bottom of the Triassic evaporite (AB-TU₁, at the top of the Tuscan Metamorphic Complex, TMC), which is found at sea level under the volcano and at more than 3 km b.s.l. at a distance of about 10 km NW from it (Fig. 6). Toward the SE this horizon is less inclined reaching 1.5 km b.s.l. at about the same distance.

2.2.3 Diapirism

Clayey diapirs occurring in the area across the margin of the volcanic sequence have hardly received attention. Our work show, in fact, that they occur at all scales:

a) At the largest scale (0.1 to 10 m), clay sediments intrude the oldest lava sequences forming dikes from a few decimeters to many meters in thickness (Fig. 7). This phenomenon, similar to what has been found at Conception Volcano in Nicaragua (Borgia and van Wyk De Vries, 2003), occurred during flow emplacement or shortly thereafter, because the clay in the dikes has turned red by heating from the flows (also cf. Bertini et al., 2008). In addition, to allow intrusion, the clays should have been still unconsolidated. These observations suggest that some of the flows could have been emplaced in a lacustrine environment.

b) At the middle scale (10 to 100 m), clayey diapirs, both from chaotic Pietraforte and Argille a Palombini formations, extend and dismember the overlying lava flows turning them into meter-size lava-block fields (Fig. 2). In some cases, as at Ermicciolo in the NE part of the volcano, the diapirs seem to pierce the flows, providing the impermeable base for emerging springs.
c) At the smallest scale (100 m to 1 km) clayey diapirs rising at the edge of the volcano are thrust over lava blocks at the outer margin of the volcano (Fig.s 8 and 4c). Clayey diapirs also occur within the Ligurian units in a belt northwest and west of the base of Amiata. Here the stratigraphic lower Sub-Ligurid unit (CA-SL) and the External Ligurid (AV-EL) rise with tectonic contacts into the upper External Ligurid (PF-EL) and Internal Ligurid (AP-IL) units (Fig. 2-geology; Fig. 6b). In addition, around the periphery of the volcano, the lava flows become uplifted and tilted toward the volcano forming gentle synclines (also cf. Ferrari et al., 1996), which, in turn, are frequently filled with lake sediments (Fig. 2). Finally, anhydrite diapirs rise forming doming structures into the Tuscan and Ligurid Units in a belt around to the base of Amiata (Fig. 6a). SE and SW of Amiata Volcano, where the anhydrites domes (which are permeable due to fracturing and dissolution processes) are covered by the clayey Ligurid Units, they form ideal high-temperature geothermal heat traps. Indeed, these are the location of the historically exploited geothermal fields. In the NE, instead, where the Ligurian Units have been eroded away, and the rocks of the geothermal field crop out, the rising geothermal fluids feed historically-known low-temperature hot springs.

2.3 Geomorphology

We have done a detailed analysis on river and stream flow directions. In principle, with no tectonic influence, streams should have a general radial pattern away from the upper part of the volcano (apart for the case of domes growing inside a valley). Therefore, anomalous sharp changes in flow directions, relative to this pattern could be the consequence of tectonic activity. Our analysis shows that both within and outside the volcano a set of sharp changes in the flow directions from the radial pattern is indicative of strong structural control on surface-water flow-directions. Within the volcano, radial steepest-descent flow-directions are cut by ridges that abruptly divert rivers and streams, which become tangential to the volcano (Fig. 9a). Away from the volcano, additional ridges divert the flow of streams (Fig. 9b) forming entrenched streams, stream captures, and hanging and dammed valleys. These morphologic features occur because of normal faulting (Losacco, 1957; Ferrari et al.,
1994), which downthrow the central part of the volcano relative to the margins, and of thrusting and diapiric faulting in a belt around the base of the volcano. We interpret these features as the result of radial outward spreading of the anhydrites formation and of the chaotic shaley units (Ligurid Units) under the load of the volcano.

2.4 Volcanic spreading

The first suggestion on the existence of gravitational tectonics on the Mt. Amiata region was made by Cataldi (1965). In particular, he suggests that the diapiric deformation, which originates in the evaporitic Triassic formation cut upward into the clayey formations of the Tuscan and Ligurian Units, forming in some places, like at Poggio Zoccolino NE of Amiata, structures that can be classified as “piercing” tectonic features (Fig. 6a). He also pointed out that the structures within the evaporites and the overlying clayey units are in part independent from the structures of the underlying metamorphic basement. The faults that affect the evaporitic formation cut upward into the clayey formations disrupting and thinning them, thus, creating localized section of higher permeability. Cataldi (1965), though, attributes these gravitational tectonic events to pre-volcanic times.

Calamai et al. (1970) show that positive and negative tectonic features on top of the evaporitic formation generally trend N-S. However, as they approach Amiata Volcano, these features are rotated, becoming tangential all around the volcanic edifice, and are displaced by volcano-tectonic faulting. Although most of the deformation is considered to be pre-volcanic, volcano-tectonic faulting is then supposed to have influenced locally the recent tectonics. In particular, it was observed that the volcanic edifice is normally faulted and sank into its basement. The basement itself below the volcano forms a closed depression bounded by volcano-tectonic normal faults. In addition, a set of faults are concentric to Mt. Amiata with the up-thrown block on the volcano side; these faults run all the way from north of Poggio Zoccolino with NE strike passing to the east to a SE strike, to north of Abbadia San Salvatore with a SSE strike, to south of Abbadia with SSW strike, to south of Piancastagnaio with a WSW strike. This fault-set diverges substantially from the N-S trend of the regional Pleistocene set of faults of the Radicofani graben. Our work
shows that at the surface this fault-set corresponds to topographic ridges, concentric to
the volcano, which divert the drainage pattern, constituting the external boundary of
the geothermal fields and of the Selagites outcrops.

We suggest that these faults are the expression of diapiric thrust fronts generated by
the gravity spreading of the volcanic edifice. We point out that in many of the
volcanoes, where spreading has been recognized, these thrusts have been first
interpreted as normal faults, such as the Central Costa Rica Volcanic Range and
Kilauea volcano (Borgia et al., 1990), Etna Volcano (Borgia et al., 1992), and
Concepción Volcano (Borgia and van Wyk de Vries, 2003).

Canuti et al. (1993), Ferrari et al. (1996), and later Garzonio (2008) suggest the
existence of deep-seated gravity deformation on Amiata volcano. Based on a
stratigraphic and structural study, Ferrari et al. (1996) try to correlate the normal
upward-facing faults within the volcanic edifice with the rotation of regional fold
axes, which become tangential to the northern and southern base of Amiata. Volcanic
loading would, therefore, produce collapse and spreading of the central part of the
volcano with consequent compression at its base.

Bonini and Sani (2002), and Bonini et al. (2014) show in a number of seismic lines,
striking ENE across the Radicofani Graben just west of the Amiata Volcano, small
thrust faults cutting the Plio-Pleistocene marine deposits with hanging-wall motion
toward the ENE, that is away from the volcano. Brogi (2008) indicates that these
thrust faults could be better explained by gravitational rather than regional tectonics.

Part of this basal deformation is also indicated in the structural maps of Calamai et al.
(1970) and Acocella (2000) where a relatively large number of NNW-SSE trending
short-wavelength folds and thrust faults intersect the Plio-Pleistocene Marine deposits
at the eastern base of Amiata Volcano. We observe that these folds and faults do not
appear to continue north and south of the Volcano, suggesting a direct relation with it.

Our reconstruction of flow surfaces (Fig. 2) shows that most of the volcanic edifice is
cut by faults mainly with downthrown blocks toward the volcano summit, a fact that
has been documented also in previous studies (Calamai et al., 1970; Ferrari et al.,
1996). Although normal faulting within the volcano tends to have a prevailing NE-
SW strike, we identify also leaf-grabens and wedge-horsts similar to those found on
Etna (Merle and Borgia, 1996) or Vesuvius (Borgia et al., 2005). The collapse of the
central part of the volcanic edifice and its sinking in the anhydrites and shaley
formations induced their radial flow toward the periphery giving rise to volcanic
spreading (Fig.s 2c and 6a). In turn, the anhydrites and clayey formation around the
base of the volcano were involved in diapiric-like tectonics, dismembering the distal
sections of the flow fields (Fig.s 2a and 6) and diverting and damming the drainage
(Fig. 9).

We suggest that volcanic spreading at Amiata occurs on the weak substratum
constituted by the late Triassic evaporites (Burano Anhydrites) and the Middle-
Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Because
of these, the anhydrites have been “squeezed out” from below and have accumulated
in domes and diapirs at the base of the volcano. Since these domes have a shaley
cover (cap rock), they form ideal heat traps for geothermal fields. In turn, the ductile
deformation of the evaporites has been drastically enhanced by the high-temperature
hydrothermal fluids of Amiata Volcano. In fact, the plastic strength of anhydrites
decreases by more than two orders of magnitude as the temperature increases above
120 °C (Suppe, 1985). In addition, regional doming (Acocella, 2000) creates a
basement that slopes away from the volcano, boosting even more the outward flow
and spreading of the ductile layers below the load of the volcano.

Finally, we speculate that the absence of tephra layers from the sequence at Amiata
volcano could also result from volcanic spreading. In fact, by decreasing the
lithostatic pressure on the magma, volcanic spreading allows magma degassing over
long periods of time inhibiting gas-phase pressure build up and, in turn, energetic
explosive activity. The same mechanism has also been proposed for Concepción in
Nicaragua (Borgia and van Wyk De Vries, 2003) and Vesuvius in Italy (Borgia et al.,
2005).

3. Dynamics
In order to model the deformation structures found in the field we conceptualize Amiata volcano as a brittle cone above a viscous substratum. The cone is made of volcanic rocks, while the substratum consists of the clayey Ligurid complexes and the underlying Anhydrite Formation (Fig. 10).

3.1 Analytical model

The deformation of a thin ductile layer under the differential loading induced by the topographic relief of the volcano may be described by the lubrication approximation of the Navier Stokes equations (Bird et al., 1960; Borgia et al., 2006), which in 2-D rectangular coordinates can be written as:

\[
\begin{align*}
\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} &= 0 \quad \text{mass conservation} \quad (1a) \\
-\frac{\partial p}{\partial x} + \mu_d \frac{\partial^2 v_x}{\partial z^2} + \rho_d g \sin \alpha &= 0 \quad \text{x-momentum conservation} \quad (1b) \\
-\frac{\partial p}{\partial z} - \rho_d g \cos \alpha &= 0 \quad \text{z-momentum conservation} \quad (1c)
\end{align*}
\]

where \(x \) is the distance from the centre of the volcano along the top of the rigid substratum, that slopes with an angle \(\alpha \); \(z \) is the vertical coordinate, positive upward; \(p \) is pressure; \(g \) is the gravity acceleration; the ductile layer has a viscosity \(\mu_d \) and a density \(\rho_d \); \(v_x \) and \(v_z \) are the components of the velocity in the \(x \) and \(z \) directions, respectively.

For no-mass generation, the boundary conditions (BC) for Eq. (1a) are

\[
\begin{align*}
\left. v_z \right|_{z=0} &= 0 \quad (2a), \\
\left. v_z \right|_{z=h_d} &= \int_{v_z|z=0}^{v_z|z=h_d} \frac{\partial v_z}{\partial t} = \frac{\partial h_d}{\partial t} \quad (2b).
\end{align*}
\]

While the first of these two equations implies no slip at the lower boundary, the second indicates that the deformation of the top of the ductile layer follows the time \(t \) evolution of its thickness \(h_d(x, t) \). The condition for Eq. (1b) is for no slip at the lower boundary

\[
\left. v_x \right|_{z=0} = 0 \quad (2c).
\]

The upper BC, for \(\alpha > 0 \) and no-slip between ductile and brittle layers, is determined by the behaviour of the brittle layer at the scale of the system. There can be three limiting cases:
1) for the case of a total laterally constrained brittle layer, the BC is (Borgia et al., 2000)

\[v_x \big|_{z=h_b} = 0 \quad (2d1); \]

2) for the case of an upper brittle layer that is carried passively on top of the ductile layer, the top BC is

\[\frac{\partial v_x}{\partial z} \big|_{z=h_b} = 0 \quad (2d2); \]

3) finally, for the case of an unconstrained brittle layer, the top BC is determined by the x-component of the load of the layer (Borgia et al., 2002), that is

\[\frac{\partial v_x}{\partial z} \big|_{z=h_b} = -\frac{\rho_b g h_b \sin \alpha}{\mu_d} \quad (2d3), \]

which reduces to Eq. (2d2) for \(\alpha = 0 \).

The condition for Eq. (1c) is hydrostatic pressure given by:

\[p \big|_{z=h_b} = P_b (x, t) = \rho_b g h_b \cos \alpha + P_0 \quad (2e), \]

where \(h_b = h_b (x, t) \) and \(\rho_b \) are, respectively the thickness, a function of \(x \) and \(t \), and the density of the brittle layer; \(P_0 \) is the atmospheric pressure and is assumed constant. Since pressure is a scalar, this condition also solves implicitly the pressure boundary condition in Eq. (1b).

Integrating Eq. (1) with the given BC, leads to:

\[\frac{\partial h_d}{\partial t} = \frac{\rho_d g \cos \alpha}{3c \mu_d} \frac{\partial}{\partial x} \left[h_d^3 \frac{\partial}{\partial h} \left(h_d + \left(\frac{\rho_b}{\rho_d} \right) h_b \right) \right] + \tan \alpha \left[\frac{d}{2} \left(\frac{\rho_b}{\rho_d} \right) h_b \right] - 1 \right], \]

where the constants \(c \) and \(d \), in accordance with the different BC, take the following values:

\[c = 4 \quad \text{and} \quad d = 0 \quad \text{for the 1st type of BC - Eq. (2d1)} \quad (3b), \]

\[c = 1 \quad \text{and} \quad d = 0 \quad \text{for the 2nd type of BC - Eq. (2d2)} \quad (3c), \]

\[c = 1 \quad \text{and} \quad d = 1 \quad \text{for the 3rd type of BC - Eq. (2d3)} \quad (3d). \]

To make Eq. (3a) dimensionless and scaled, we assume the following variables:

\[\xi = \frac{x}{R_v} \]

(5a),
In Eq. (5a), R_v is the characteristic length of the topography in the x-direction, that is the radius of the volcano. In addition, for a small angle α, the topography is the major forcing function onto the system. Therefore, R_v should become also the characteristic length of the ductile layer, that is $L_d = R_v$. For the thicknesses (Eqs. 5b and 5c) we have three scaling variables H_d, H_b and H_v that are, respectively, the maximum thicknesses of the ductile and brittle layers at the start of the process and the height of the volcano. Since $\left(\frac{H_d}{H_v}\right)$ and $\left(\frac{H_b}{H_v}\right)$ are constants, these scaling variables may be used interchangeably. T is the characteristic time of evolution of the system (Eq. 5d).

Substituting these variables into Eq. (4), leads to:

$$\frac{\partial \eta}{\partial \tau} = \frac{\partial}{\partial \xi} \left[\eta^3 \left(\frac{\partial}{\partial \xi} \left(\frac{\partial}{\partial \xi} (\eta + f \varphi) \right) + r \left(d \frac{3}{2} \frac{f \varphi}{\eta} - 1 \right) \right) \right]$$ \hspace{1cm} (6a),

where

$$T = \frac{3\mu_d H_v^3}{\rho_d g \cos \alpha R_v^2}$$ \hspace{1cm} (6b),

$$f = \frac{\rho_b H_v}{\rho_d R_v}$$ \hspace{1cm} (6c),

and

$$r = \frac{\tan \alpha}{H_d/L_b}$$ \hspace{1cm} (6d).

On the right side of the equal sign in Eq. (6a) within the square brackets of Eq. (6a), the left term $\frac{\partial}{\partial \xi} (\eta + f \varphi)$ describes the flow induced by the hydrostatic pressure within the ductile layer – which, in turn, is controlled by the topography of the volcano; the right term $r \left(d \frac{3}{2} \frac{f \varphi}{\eta} - 1 \right)$ accounts for the flow induced by the
component of gravity in the x-direction: the first of the two terms in parenthesis is the
cortribution of the brittle layer, the second that of the ductile layer.

Since the left term within the square brackets of Eq. (6a) is of order 1, that is
\[
\frac{\partial \eta}{\partial \xi} (\eta + f \varphi) = O(1)
\]

(7),

there can be three possibilities:

1. \(r << 1 \)

(8a1),

that is for small slopes \(\tan \alpha \) is small relative to \(H_d/L_b \). Therefore, Eq. (6a) reduces to the equation used by Borgia et al. (2000) and Borgia et al. (2003)

\[
\frac{\partial \eta}{\partial \tau} = \frac{\partial}{\partial \xi} \left[\eta^3 \frac{\partial}{\partial \xi} (\eta + f \varphi) \right]
\]

(8a2).

2. \(r = O(1) \)

(8b),

for which both terms in Eq. (6a) are relevant and is used the full Eq. (6a). Finally,

3. \(r >> 1 \)

(8c1),

which implies that for large slopes \(\tan \alpha \) is large relative to \(H_d/L_b \) and Eq. (6a) reduces to

\[
\frac{\partial \eta}{\partial \tau} = r \frac{\partial}{\partial \xi} \left[\eta^3 \left(d^\frac{3}{2} f \varphi - \frac{1}{\eta} \right) \right]
\]

(8c2).

If we now assume that the thickness of the brittle layer (that is the volcanic edifice and the surrounding topography) can be represented by the following simple function

\[
h_b = H_v e^{-\frac{x}{R_v}} + x \tan \beta + b
\]

(9),

where \(\beta \) is the angle of regional topographic slope relative to the rigid basement, \(R_v \) is the geometric radius of the volcano of height \(H_v \) obtained by interpolating the topography (in model coordinates) to Eq. (9), and \(b \) is the minimum thickness of the brittle layer. In dimensionless form we may write:

\[
\varphi = e^{-\xi} + s_1 \xi + s_2
\]

(10a);
\[s_1 = \frac{\tan \beta}{H_v / R_v} \]
\[s_2 = \frac{b}{H_v / R_v} \]

(10b), (10c).

We remark that the scaled thickness of the brittle layer \(\varphi = \varphi(\xi, \tau) \) is a function of the scaled horizontal dimension and time. That is Eq. (10a) can include the time and space functions of volcano growth and surface erosion.

Ideally, the coefficients in Eq. (10a) should be obtained from interpolating this equation to the actual thickness of the brittle layer before deformation begins. In practice, for a deformed volcano such as Amiata, we know this thickness only well after deformation has started, and possibly well after deformation has ended.

3.2 Scaling analysis

Table 1 contains the values for the parameters used in our scaling analysis and in the numerical solution of Eq. 6. These values are taken directly from measurements of morphologic features and geometry of Amiata Volcano and from the bibliography.

The time scale for deformation, given by Eq. (6b), is in the order of magnitude 350 ka for the first type of boundary condition decreasing by about 4 times to 90 ka for the second and third type of boundary conditions. This is an important finding because, if the 1\(^{st}\) type of BC is the one that actually represent the real condition, the corresponding time scale is larger than the age of Amiata (about 300 ka), indicating that volcanic spreading (deep-seated gravity deformation) may still be active. However, if the 2\(^{nd}\) or 3\(^{rd}\) types of BC are applicable, the spreading may well be ended.

It is also possible that different BC are applicable to different sectors of Amiata, making the deformation active only in some of these sectors. Even if we are not able to unambiguously demonstrate this at present, our fieldwork suggests that spreading of the northern sectors of Amiata is probably ceased, while it is still probably active on the southern sectors.
From Eq. 6b we may write
\[
H_v = \sqrt{\frac{3c\mu_g}{\rho_d g \cos \alpha_T}} R_v^{2/3} = 4 R_v^{2/3}
\]
(11).

Borgia and Murray (2010) have shown that the fraction under the cube root on the right of the equal sign tends to be constant, with an approximate value of 4. Therefore, Eq. 11 gives a direct relationship between heights and radii of spreading volcanoes. Fig. 11 shows that Amiata Volcano fits this criteria, standing at the lowest (and smallest) end of our list of spreading volcanoes.

3.3 Numerical solution
We solve Eq. (6) numerically using MathematicaTM with a thickness of the brittle layer (the surface topography) as a function of ξ and τ given by Eq. (10) that also gives the topography at time zero. The solution is explored for the three BC given in Eq. (7), for basement slopes of 0° and 5°, and for a surface topography that varies in space and time. We simulate a total of 12 independent conditions (Table 2). This set of conditions actually represents a larger set of 24 scenarios of which 12 give identical solutions. In particular, the solutions given by the 1st type of BC (Eq. 7a) are identical to those obtained by the 2nd type of BC (Eq. 7b); the only difference being the value of the dimensionless scaled time, which is four times larger for the 1st ($c = 4$) relative to the 2nd ($c = 1$) type of BC. For the 3rd type of BC the solutions are equal to those generated by the 1st type only for the case of a horizontal basement ($\alpha = 0^\circ$).

The surface topography is modelled in a very simple fashion. We choose to stress the importance of topographic evolution in determining ductile-layer deformation, more than trying to simulate the actual changes of topography for which we have at the moment no data. We make surface topography evolve according to a function that depends on different degrees of lava emplacement on the volcano and surface erosion away from it. We observe that as the volcano and its substratum sink into the ductile layer, new lava flows may be emplaced that compensate to a given degree the rate of sinking. Similarly, away from the volcano, as the surface topography is lifted up or
subsides there is respectively either erosion or deposition that will also compensate to
a given degree the ductile-layer deformation. In practice we use a multiplayer
constant – which we call coefficient of topographic recovery (e) – to simulate the
recovery of different amounts of topographic changes. This constant equals zero to
simulate no deposition (lava flows and sediments) and erosion (sediments); it is one to
simulate a topography that is maintained at constant elevation by deposition and
erosion processes. We have also set this constant to 0.25 and 0.50 to simulate
intermediate conditions in which the original thickness of the brittle layer is recovered
only by a fraction.

Fig. 12 shows the results for the cases discussed above. It can be observed that, as the
slope angle increases, the effect given by x-component of the load onto the ductile
layer increases accordingly, giving rise to waves that tend to have larger amplitudes
closer to the volcano base. Also, as the deposition/erosion effect increases, so does
the diapiric effect in the ductile layer. The combination of larger slopes, third type of
boundary condition and maximum deposition/erosion effect makes the numerical
solution to Eq. (6a) evolve to a singularity as the rising diapir of ductile layer pierces
the topography closer to the volcano.

4. Summary of conclusions
Our detailed straigraphic, structural and morphologic study of Amiata Volcano shows
that volcanic spreading has profoundly dissected its edifice, creating a set of summit
grabens, flank-displacement structures and basal diapiric and thrust structures that
differ substantially from caldera-type collapse structures (Fig.s 2 and 6). These
structures have profoundly affected the drainage pattern, which is now strongly
angular, streams dams and capture (Fig. 9), and a set of lakes within and around the
volcano.

Our thesis agrees with the conclusions of former works on the tectonics of Amiata by
Ferrari et al. (1996) and Garzonio (2008), but disagrees with the work of Brogi et al.,
(2010), which proposes that the deformation of the Amiata volcanic edifice is due to
left-lateral strike-slip regional tectonics. We find little evidence of active strike-slip
regional tectonics on Amiata, although this kind of tectonics could certainly have
been active at an earlier time to trigger magma ascent and eruption. We think that most of the strike-slip indicators found on Amiata Volcano lavas are the result of differential motions occurring between adjacent lava flows sections, similar to what has been demonstrated to occur on lava flows at many other volcanoes (Fink, 1980; Leat and Schminke, 1993; Linneman and Borgia 1993; Tibaldi, 1996), or between adjacent spreading sectors (Borgia et al., 1992).

We propose that volcanic spreading has forced the flow of the anhydrites toward the periphery of the volcano and their diapiric rise around its base. Where present, the impermeable shaley cover formed by the Ligurian Units has allowed the formation of geologic traps where the hydrothermal circulation have accumulated heat to form ideal surficial high-temperature geothermal fields. In turn, the high temperature lowered the viscosity of the anhydrites enhancing the spreading process. The shaley chaotic complexes have facilitated the deep-seated gravitational deformation of the volcanic edifice to a smaller percentage.

Our analytical scaled model, based on the lubrication approximation of the Navier-Stokes equations, suggests that spreading occurs over a time that ranges between 50 ka and 500 ka, suggesting that spreading may still be active (Fig. 11). Also, basement slope (Woller et al., 2004), lava deposition on the volcano and surface erosion away from it can enhance the spreading dynamics creating radial train of diapirs (Fig. 12).

Finally, the normal faults generated by volcanic spreading and the volcanic conduits, in addition to the direct contacts between the volcanic rocks and the rocks of the Tuscan Formation that host the geothermal fields, constitute undoubtedly ideal paths for water recharge during vapour extraction for geothermal energy production. In this context, if volcanic spreading is still active, as the scaling analysis suggests, it could maintain faults in a critically stressed state, facilitating the occurrence of seismicity induced or triggered by the exploitation of geothermal energy.

5. Acknowledgments
This work has been financed by EDRA and the Regione Toscana Government Decreto n. 5859 of 07 October 2005. We do not claim that the conclusions discussed in this paper represent the position of the Regione Toscana Government on this subject. We thank the many people at Amiata that helped us during field work, Claudio Faccenna for pointing out the fault-controlled drainage pattern at Amiata, and Guillermo Alvarado Induni for pointing out similarities between some of Amiata deposits and those emplaced by hot avalanches.

6. References

Doi: 10.1111/j.1365-3121.2010.00927.

Table 1. Parameters used for scaling analysis and numerical solution.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>min. value</th>
<th>max. value</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of brittle layer</td>
<td>H_v</td>
<td>1000</td>
<td>1200</td>
<td>±100</td>
</tr>
<tr>
<td>R_v (m)</td>
<td></td>
<td>5000</td>
<td>6000</td>
<td>±800</td>
</tr>
<tr>
<td>ρ_v (kg/m3)</td>
<td></td>
<td>2500</td>
<td>2700</td>
<td></td>
</tr>
<tr>
<td>s (m)</td>
<td></td>
<td>550</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>H_d (m)</td>
<td></td>
<td>350</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>ρ_d (kg/m3)</td>
<td></td>
<td>2600</td>
<td>2600</td>
<td></td>
</tr>
<tr>
<td>μ_d (Pa s)</td>
<td></td>
<td>10^{18}</td>
<td>10^{18}</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td></td>
<td>0°</td>
<td>5°</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td>0°</td>
<td>5°</td>
<td></td>
</tr>
<tr>
<td>g (m/s2)</td>
<td></td>
<td>9.81</td>
<td>9.81</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Conditions explored in the solution to Eq. (6).

<table>
<thead>
<tr>
<th>BC type</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope (α) ⇒</td>
<td>$\alpha = 0^\circ$</td>
<td>$\alpha = 5^\circ$</td>
<td>$\alpha = 0^\circ$</td>
</tr>
<tr>
<td>Coefficient of topographic recovery (e) \downarrow</td>
<td>e = 0.00</td>
<td>1^{st}</td>
<td>1^{st}</td>
</tr>
<tr>
<td>e = 0.25</td>
<td>1^{st}</td>
<td>1^{st}</td>
<td>2^{nd} = 1^{st}</td>
</tr>
<tr>
<td>e = 0.50</td>
<td>1^{st}</td>
<td>1^{st}</td>
<td>2^{nd} = 1^{st}</td>
</tr>
<tr>
<td>e = 1.00</td>
<td>1^{st}</td>
<td>1^{st}</td>
<td>2^{nd} = 1^{st}</td>
</tr>
</tbody>
</table>
Fig. 1. Location of Amiata Volcano in relation to the extensional tectonic structures found in the back-arc of the Northern Apennines (modified after Carmignani et al., 1994). NE of Mt. Amiata. Double-lines are regional transtensional structures; ticked-lines are normal graben-bounding faults –ticks on downthrown side; pattern is the Siena-Radicofani graben. Red inset is the area of the geological map in Fig. 2.
The geology of the volcanic units are from Ferrari et al. (1996), Regione Toscana (2006-2009), and this work. The geology of rocks forming the Amiata non volcanic basement is from Regione Toscana (2006-2009) and this work. Note the outcrops of intrusive selagite rocks found just SE of the volcano in the Santa Fiora unit (SF-EL) that occur along the supposed uplift structure. SE and SW of Amiata between the volcano and the far edge of the uplift structures are the exploited geothermal fields. Circled A, B and C show the location of boreholes of Fig. 4.
b) Legend of geological map:

- **Units V1 to V16** = identified volcanic flow units that are numbered where possible from youngest to oldest;
- **SE** = Selagites;
- **IC** = intrusive complex;
- **M-P-Q** = Miocene-to-Quaternary marine and continental sediments;
- **IL** = Internal Ligurids (**AP-IL** = Argille a Palombini Formation);
- **EL** = External Ligurian Units (**AV-EL** = Argille Varicolori, **SF-EL** = Santa Fiora Unit, **PF-EL** = Pietraforte);
- **SL** = Sub-Ligurian Units (**CA-SL** = Canetolo Sandstone);
- **TU** = Tuscan Units (**AB-TU₁** = Anidriti of Burano, **LT-TU₂** = carbonates and turbiditic units);
- **TMC** = Tuscan-Units Metamorphic Complex (**MS-TMC** = Micashists Group, **PQ-TMC** = Phyllite-Quarzite Group, and **VE-TMC** = Verrucano Group);
- **GC** = Paleozoic Gneiss upper crustal Complex.
e) Sketch of spreading dynamics. Note the grabens close to the volcano summit and the folds around the periphery of the volcano. Pink = brittle units (manly Volcanic Units and Lower Tuscan Units), celeste = potentially ductile units (manly Ligurian Complex). Arrows indicate direction of spreading; other symbols are as in Fig. 2b.
Fig. 3. Sketch of the stratigraphy of Amiata Volcano area. Acronyms and colours are in legend Fig. 2b. The volcanic units are all included into the Volcanic Complex (VC). Vertical and horizontal scales are arbitrary.
Fig. 4. Stratigraphy found in boreholes at Amiata Volcano – see Fig. 2 for borehole locations.

- **a)** Borehole east of Amiata: note the direct contact between the lavas (VC) and the Units of the Tuscan formation. This kind of contact offers optimal hydrogeological connections between the freshwater aquifer contained in the volcanic rocks above and the geothermal aquifer below.

- **b)** Borehole southwest of Amiata: note the lacustrine deposits on top of the lava flows. These sedimentary deposits are found on the volcano, wherever faults, or tilted lava flows dam the drainage.

- **c)** Borehole south-southwest of Amiata: note that the Quaternary lavas are found within the Ligurian Units of Cretaceous age (VC within AP-IL); see also Fig. 8. This type of sequence is due to a structural dynamics that is younger than the lava flows. Depths are meters below ground surface.
Fig. 5. Open fracture in the travertine northeast of Amiata – cf. Fig. 2a unit (tr). Note that, contrary to what had been previously suggested (Brogi et al., 2010), there is no strike-slip component in the approximate N-S direction of opening (red arrows) of the fracture. White line is the strike of the fracture.
Fig. 6. Geologic cross sections of Amiata Volcano. Data from Calamai et al. (1970), Enel (2009a and b), Pandeli et al. (2005), Regione Toscana (2005-2009), and this work. Traces of cross sections are shown in Fig. 2. Section A-A’ is along the ENE-WSW axis of the volcano. Section B-B’ strikes from the summit of Amiata approximately ESE. Section C-C’ strikes from the volcano axis NNW. Note the accumulation of anhydrites (AB-TU_i) forming domes and horsts at the base of the volcano; these domes, where covered by the clayey Ligurid rocks constitute the geothermal fields.
Fig. 7. Sedimentary dyke within the upper blocky section of a flow in the NW of Amiata. The clayey material is red due to heating after being entrenched in the hot flow.
Fig. 8. One of the many outcrops of lava blocks embedded by diapiric thrusting within the Pietraforte (PF-EL) on the SW margin of the volcano just WNW of point (e) in Fig. 2a and Fig. 4 borehole (e).
Fig. 9. River drainage on and around Amiata Volcano.

a) Highlighted with back arrows are some of the most evident angular drainage paths. The abrupt changes in flow direction are related to faults that divert the drainage. The pink line indicate the edge of the lava field.
b) View, looking SW from the edge of the lava field, of the “ridge cutting a valley” shown at the bottom right of Fig. 9a.
Fig. 10. Sketch of the volcano with analytical model parameters. See text for explanation.
Fig. 11. The ratio between the cube of the height and the square of the length fall on a straight line as shown by Borgia and Murray (2010). Amiata Volcano falls at the lower end of the range of spreading volcanoes.
Fig. 12. Graphical representation of the solution to the Eq. 6 for various values of the parameters. ξ – the scaled radial distance from the volcanic centre – is positive to the right from $\xi = 0$ to $\xi = 25$ (in the actual model $\xi = 100$), η – the thickness of the ductile layer – is positive upward ranging from $\eta = 0$ to $\eta = 4$, and time increases into...
the page from $\tau = 0$ to $\tau = 2$. Therefore, on the plane $\xi - \eta$ is represented the
topographic profile as it evolves through time. The bottom of the box is the bottom of
the ductile layer, which remains unchanged in time and space. The intermediate
surface is the top of the ductile layer, which deforms as the volcano, sinking into the
ductile basement, generates a wave that grows larger in time. The top surface is the
topography, which show the volcano sinking into the basement as time passes. Note
that as α increases and the third type of boundary condition become effective, in place
of a single wave, a train of waves tend to develop. Also, as the angle of slope α and
the surface erosion increase the solution evolves to a singularity: the ductile layer
perches the topography. See text for a detailed explanation.