Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability

Annalisa Cherchi1 and Antonio Navarra1

1Centro Euromediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Manuscript submitted to

Climate Dynamics

November 8, 2012

Corresponding author:

Annalisa Cherchi (CMCC/INGV)
Viale Aldo Moro 44
40127 Bologna, Italy
E-mail: annalisa.cherchi@bo.ingv.it
Phone: +39 051 3782613
Fax: +39 051 3782655
Abstract

Indian summer monsoon (ISM) variability is forced from external factors (like the El Niño Southern Oscillation, ENSO) but it contains also an internal component that tends to reduce its potential for predictability. Large-scale and local monsoon indices based on precipitation and atmospheric circulation parameters are used as a measure of ISM variability. In a 9-members ensemble of AMIP-type experiments (with same boundary SST forcing and different initial conditions) their potential predictability is comparable using both local and large-scale monsoon indices. In the sample analyzed, about half of more predictable monsoon years coincide with El Niño and/or positive Indian Ocean Dipole (IOD) events.

Summer monsoon characteristics during ENSO and IOD years are analyzed through composites computed over a three years period (i.e. one year before and one year after the event peak) to investigate the mutual relationship between the events lagged in time. The connection between ISM and IOD is mostly confined in the summer and autumn, while that with ENSO is stronger and extends more in time. In the coupled model results the IOD influence on the monsoon is large, even because in the model IOD events are intense and easily reproduced due to a strong air-sea feedback in the eastern side of the basin. Monsoon seasons preceding or following an El Niño or a La Niña event are not exactly symmetric, even in terms of their biennial character. In most of the cases, both in reanalysis and model, El Niño and positive IOD events tend to co-occur with larger anomalies either in the Indo-Pacific ocean sector or over India, while La Niña and negative IOD do not.

From the observed record, the ENSO-IOD correlation is positive strong and significant since mid-60s and it may correspond with either strong or
weak ENSO-monsoon relationship and with strong or weak IOD-monsoon relationship. A main difference between those periods is the relationship between Indian monsoon rainfall and SST in other ocean basins rather than the Indo-Pacific sector alone.
1 Introduction

The Indian summer monsoon (ISM) is one of the main components of the broad-scale Asian summer monsoon that represents the largest source of moisture and precipitation of the tropical sector (Webster et al., 1998). The ISM varies at many timescales, from intra-seasonal to interdecadal, and it is largely modulated by external factors, like the El Niño Southern Oscillation (ENSO). This remote influence is known since the beginning of the 19th century and it has been widely investigate in the past (Walker, 1924; Sikka, 1980; Rasmusson and Carpenter, 1983; Kirtman and Shukla, 2000, among others). The negative relationship between ENSO and the ISM can be explained as a modulation of the Walker circulation (i.e. Ju and Slingo, 1995). During warm ENSO episodes, the rising limb of the Walker circulation shifts eastward in response to a warming of the eastern Pacific causing descent of air in the Western Pacific and Indian sectors with decreased monsoon rainfall (Goswami, 1998; Lau and Wang, 2006).

The dependence of the ISM variability on ENSO, i.e. on the remote SST forcing from the Pacific Ocean, represents a very important aspect of the monsoon for its prediction. In a general perspective, the understanding that anomalous boundary conditions provide potential predictability is the scientific basis for deterministic climate predictions (Charney and Shukla, 1981). Monsoon predictability is indeed a crucial issue as life and economy of million of people depends on its rainfall, but because of its complex nature and the diversity of its interactions, useful monsoon prediction is still a challenge (Webster and Hoyos, 2010; Turner and Annamalai, 2012). In the Asian/Indian monsoon regions, both externally forced and internal variability components have been identified to measure the monsoon potential predictability (Shukla, 1981; Singh and Kripalani, 1986; Goswami, 1998; Mohan and Goswami, 2003, among others). Because of the determining role of the internal “unpredictable” variability component, some studies tried as well to link it to the monsoon intra-seasonal oscillation (Goswami, 1994; Sperber et al., 2000; Goswami and
Xavier, 2005).

Toward the end of the 20th century changes have been documented in the strength of the ENSO-monsoon relationship (Kumar et al., 1999; Kinter et al., 2002). Even though studies suggested that its weakening could be apparent, as either due to the use of fixed definition of seasons (Xavier et al., 2007), or to random fluctuations (van Oldenborgh and Burgers, 2005). In the last two decades, the Indian Ocean Dipole (IOD, Saji et al., 1999; Webster et al., 1999) has been identified as potential trigger of the ENSO-monsoon connection (Ashok et al., 2001; Li et al., 2003), but its active or passive role has not been clearly identified yet (Webster et al., 2002; Meehl et al., 2003; Wu and Kirtman, 2004; Cherchi et al., 2007). Air-sea interaction processes in the Indian Ocean are undoubtedly involved in the monsoon dynamics; hence they are crucial for the ENSO-monsoon teleconnection (Wu and Kirtman, 2004; Shinoda et al., 2004; Bracco et al., 2007).

On interannual timescales, a large component of the Asian summer monsoon variability consists of its biennial character, with a relatively strong event that tends to be followed by a relatively weak one in the next year. This variability has been identified as the tropospheric biennial oscillation (TBO; Meehl, 1994, 1997). The biennial character of the tropical climate in the Indian and Pacific regions largely involves the Indian summer monsoon, ENSO, Indian Ocean dynamics and their mutual interactions (Meehl et al., 2003; Wu and Kirtman, 2007). Shifting of large-scale east-west circulation, Rossby wave type response and surface heat fluxes-SST feedback are at the base of the ENSO influence on the ISM biennial variations (Meehl et al., 2003). North Indian Ocean SST anomalies (SSTA) contribute as well to rainfall transitions via anomalous low-level moisture convergence (Wu and Kirtman, 2007). IOD, ENSO, the monsoon and their mutual connections form an important and complex aspect of the tropical climate worth of further attention (Tamura et al., 2011; Boschat et al., 2011; Pokhrel et al., 2012; Achuthavarier et al., 2012).
In the present study we intend to contribute to the understanding of the relationship between the Indian summer monsoon, ENSO and the Indian Ocean dipole. In particular, we explore how the Indian summer monsoon characteristics are influenced by ENSO and IOD events, focusing on the biennial character of the monsoon. As previously mentioned, this is one of the regions where the air-sea interaction is crucial (Wu and Kirtman, 2004; Bracco et al., 2007). Nevertheless, atmospheric forced experiments can still be useful to understand aspects of the monsoon dynamics and variability, particularly when they can be compared with coupled model simulations. In this study, an ensemble of AMIP-type experiments, with forced SST boundary conditions, and an ocean-atmosphere coupled model experiment are analyzed and compared with available data and reanalysis. The role of the IOD-ENSO relationship in the weakening/strengthening of the ENSO-monsoon connection is questioned as well. In the AMIP-type ensemble we are also interested in measuring the potential predictability of monsoon precipitation and circulation-based indices coming from Pacific and Indian Ocean SST.

The study is organized as follows: Section 2 describes the experiments analyzed (including the models used to produce them), and it lists datasets and reanalysis included in the study and in the model experiments comparison. Section 3 is dedicated to the description of the mean state and variability over India in terms of monsoon indices, including the analysis of the potential predictability of monsoon extreme years in the AMIP-type ensemble. Section 4 compares the monsoon characteristics during ENSO and IOD years in both model results and reanalysis. Section 5 is mainly focused on the study of the changes occurring in the ENSO-monsoon relationship and it is mostly based on the atmospheric reanalysis. Finally, Section 6 collects the main conclusions of the study.
Two kinds of experiments have been used for the present study: an AMIP-type ensemble and a 20th century coupled model experiment. The AMIP-type ensemble consists of 9 members with the same boundary, but different initial conditions. The boundary conditions are interannually varying SST taken from the HadISST dataset (Rayner et al., 2003). The time record analyzed is 1948-2003. The experiments have been performed with the ECHAM4 atmospheric model (Roeckner et al., 1996) at T106 horizontal resolution (roughly corresponding to 1x1 spatial grid) and 19 vertical sigma levels.

The twentieth century simulation has been performed with the fully coupled atmosphere-ocean general circulation model SINTEXG (Gualdi et al., 2008). It includes prescribed concentration of greenhouse gases (i.e. CO$_2$, CH$_4$, N$_2$O and chloro-fluoro-carbons) and sulfate aerosols, as specified for the 20C3M experiment defined for the IPCC AR4 simulations (see http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php for more details) from 1901 to 2000. The characteristics of both atmospheric and oceanic model components are described in previous publications (Cherchi et al., 2008; Gualdi et al., 2008). The atmospheric component is the same used for the AMIP-type ensemble and at the same resolution, while the oceanic component is OPA (Madec et al., 1998), which is spatially distributed over a three-dimensional Arakawa-C-type grid (about 2° x 2° horizontal resolution, with a meridional refinement of 0.5° at the Equator, and 31 prescribed vertical levels).

The model outputs have been compared with observations and re-analysis data. In particular, the global distribution of sea surface temperature has been taken from the HadISST dataset over a 1x1 grid (Rayner et al., 2003), atmospheric fields come from the NCEP reanalysis (Kalnay et al, 1996) in a regular 2.5x2.5 grid, and the global precipitation over land at 0.5x0.5 resolution is taken from the CRU dataset (Mitchell and Jones, 2005). Satellite globally distributed precipitation for the period 1979-2006 over a 2.5 reg-
ular grid from the CMAP dataset (Xie and Arkin, 1997) has been used as well. Observed datasets are used in their original grid, except when compared directly. In that case data are interpolated over a common grid, usually the coarser one.

3 Mean state and variability: Monsoon indices

Fig. 1 shows the annual cycle of the precipitation and of the zonal wind shear (as U850 minus U200) zonally averaged over the Indian monsoon region (between 60-90E). Both forced and coupled model performance is realistic: large amounts of precipitation move from the ocean toward the land in summer, but the maximum remains over the ocean, as is observed (fig. 1). The comparison between AMIP-type and coupled model experiments reveals that when oceanic and atmospheric components are coupled (i.e. they can exchange fluxes), the model performance improves with an increase (decrease) of land (ocean) precipitation (fig. 1a,b). The zonal wind shear (contours in fig. 1) is used to represent the mean circulation over the Indian monsoon region (Webster and Yang, 1992). The model simulation is realistic with zonal wind shear maxima in summer at 10N, but in the coupled model experiment the values are slightly weaker than observed (fig. 1c).

Fig. 2 summarizes the summer mean state in terms of SST, precipitation and upper troposphere velocity potential, and it shows the main biases of the model. The model, both forced and coupled, has less than observed precipitation over India and in the Bay of Bengal (fig. 2a,b,c shaded contours). Over the Indian Ocean the precipitation bias in the western basin is reduced in the coupled model, thanks to the contribution of the air-sea interaction (Cherchi and Navarra, 2007). On the other hand, in the eastern side the coupled model bias is larger than in the AMIP-type ensemble because of the cold SST bias (fig. 2d).

In the Pacific Ocean, the simulated SST is colder than observed, with the cold tongue extending farther east (fig. 2d). In that area, precipitation is largely underestimated (fig. 2d)
and it shows the typical coupled model double ITCZ syndrome (Bellucci et al., 2010). The upper troposphere velocity potential is realistically centered over the Asian continent in the model (fig. 2, contours), even if the intensity is much weaker in the coupled model where it reflects the weaker than observed low-level convergence (fig. 2c).

The Indian monsoon intensity and variability may be expressed in terms of the summer (JJA) mean rainfall averaged over India (IMR - Indian monsoon rainfall index). The definition and usage of this index follow the All-Indian Rainfall (AIR) values obtained from rain-gauges measurements as described in Parthasarathy et al. (1992). In the AMIP-type ensemble, the IMR index computed for the ensemble mean is significantly correlated with the CRU dataset, and the value is 0.44, indicating that the portion of ISM variability externally forced is large. As the ensemble mean removes the internal variability, its correlation with the observations is larger than if considering the value for each member of the ensemble, or their average.

The relationship between summer precipitation over India, IOD and ENSO is lagged in time (i.e. Turner et al., 2007; Izumo et al., 2010; Boschat et al., 2011). Fig. 3 shows the lagged correlation between IMR, ENSO and IOD in terms of SST anomalies. In particular, ENSO and IOD are measured here in terms of SST anomalies using the NINO3 and the IODM indices, respectively. NINO3 is the average of monthly mean SST anomalies in the area 150-90W 5S-5N, while IODM is the monthly SST anomalies difference between a western (60-80E, 10S-10N) and an eastern (90-110E , 10S-Eq) box in the Indian Ocean (Saji et al., 1999; Saji and Yamagata, 2003). In the reanalysis and in the AMIP-type ensemble, the correlation between IMR and NINO3 is negative and significant starting before the summer, it peaks in July, in the core of the monsoon season, and it remains negative and large after the monsoon peak (fig. 3a,b). On the other hand, the correlation between IMR and IODM in the re-analysis is negative and significant only during the fall after the monsoon peak (fig. 3a - dashed line). If the eastern and western poles
of the IOD are considered separately, the western side has the largest correlation (not shown). In the AMIP-type ensemble, the correlation is negative and significant during the whole monsoon season (fig. 3b, dashed line) and as in the re-analysis the main connection is through the western lobe of the dipole (not shown). According to this result, while the ENSO-monsoon relationship appears strong during the developing phase of ENSO, the IOD-monsoon connection is mostly confined to the monsoon demise phase, corresponding to the peak of the evolution of the Indian Ocean Dipole. In the period 1979-2007 the correlation between Indian summer monsoon rainfall and fall IOD index is significant only in September (Boschat et al., 2011).

IMR is an example of a widely used index to measure the monsoon variability. However, it is well recognized that models tend to better simulate the monsoon in terms of circulation fields than in terms of precipitation. In fact, in literature many different indices based on circulation parameters have been defined and used (Webster and Yang, 1992; Kawamura, 1998; Wang and Fan, 1999; Wang et al., 2001, among others). Fig. 4 shows the annual cycle of four different indices: the precipitation-based index IMR is compared with three circulation-based indices, computed in the reanalysis and in the model experiments. In terms of precipitation averages, as previously mentioned, the model experiments tend to have less precipitation than observed over the Indian subcontinent (fig. 4a). In the coupled model the amount of precipitation in summer is more realistic but the time extension is wider than observed (it seems that the onset is slightly anticipated while the demise is slightly delayed). Fig. 4b shows the Indian Monsoon Index (IMI) defined by Wang et al. (2001). This index is computed as 850 mb JJA zonal wind difference between two sectors over the Indian monsoon region (i.e. 40-80E, 5-15N minus 70-90E, 20-30N), and it has been recognized as a good index to represent the Indian monsoon variability in the coupled model used in this study (Cherchi et al., 2007). In terms of intensity the index is slightly underestimated in the experiments, but it has a realistic time
evolution during the year (fig. 4b).

The indices just described are mostly local, but ISM variability may be represented in terms of large-scale features as well. According to that, Webster and Yang (1992) introduced the Dynamical Monsoon Index (DMI) defined as the zonal wind shear between lower and upper troposphere (U850 minus U200) averaged in the region 40-110E, Eq-20N. Fig. 4c shows how the AMIP-type ensemble is able to realistically simulate its annual cycle, while the coupled model simulation tends to underestimate its intensity, as already discussed for fig. 1. Another large-scale index is the MTG (Meridional Temperature Gradient) defined by Kawamura (1998) as the atmospheric thickness (geopotential height difference between 200 and 500 mb) difference between 50-100E, Eq-20N and 50-100E, 20-40N in summer. The MTG index is strictly connected with the zonal wind shear changes and it contains details of the atmospheric thickness associated with intense monsoon convection (Kawamura, 1998). Fig. 4d shows how the model experiments simulate its annual cycle in a realistic way. The variability of the large-scale monsoon indices is better represented compared to local indices. In fact, in the AMIP-type ensemble MTG and DMI are highly correlated with the indices computed from NCEP. The correlation coefficients considering the ensemble mean are 0.70 and 0.58, respectively.

In literature many other indices have been introduced, based on meridional wind shear (Wang and Fan, 1999) or 200mb velocity potential (Tanaka et al., 2004), to represent the Hadley and the Walker type circulations, respectively, over the area. However, for the purpose of this study and building on a previous study discussion on the performance of the same model (Cherchi and Navarra, 2007), we evaluate the indices shown in fig. 4 as appropriate to represent the ISM variability.

Considering the availability of nine members in the ensemble, for each index we compute the potential predictability for each year and we compare the performances. As mentioned in the Introduction the concept of potential predictability has been widely in-
vestigated in the 90’s and it can be measured as a sort of signal to noise ratio (i.e. Stern and Miyakoda, 1995). In particular, the signal relies on the forcing from the SST (i.e. ensemble mean), while the noise is represented in terms of the internal component (i.e. spread among the ensemble). The signal to noise ratio as measure of the potential predictability coming from the SST forcing has been studied as well using the analysis of variance (ANOVA) statistical technique in ensembles of GCM experiments (Rowell, 1998). Tropical precipitation is largely controlled by the given SST distribution, specifically in the ENSO sector (Kang et al, 2004), while in the ISM region internal oscillations can account for a large fraction of the simulated monsoon variability (Goswami, 1998; Krishnamurthy and Shukla, 2001).

Following the approach of Stern and Miyakoda (1995), we define the potential predictability (PP) of an index that varies depending on time \(y \) and on the ensemble dimension \(\eta \), as:

\[
P P = \frac{\bar{X}_y}{\sigma_{iy}}
\]

where \(\bar{X}_y \) is the ensemble mean computed as

\[
\bar{X}_y = \frac{1}{N} \sum_{\eta=1}^{N} X_{\eta y}
\]

where \(N \) is the number of the members and \(y \) is the year. The denominator \(\sigma_{iy} \) is the standard deviation among the members computed as

\[
\sigma_{iy} = \frac{1}{N} \sum_{\eta=1}^{N} (X_{\eta y} - \bar{X}_y)^2
\]

Hence PP is the ratio of the ensemble mean over the standard deviation among the members and a black bin in fig. 5 represents it for each year and for each index. According to the definition, the larger the value, the larger the potential predictability of that year. We can identify as largest values those in the tails (i.e. exceeding the 10th and 90th percentile) of the PP distribution (yellow bins in fig. 5). Typically the value of PP is large.
when the spread among the members is small (i.e. when the internal variability component is smaller than the forced one). In fig. 5 the ensemble spread is shown as well (black stars) and when PP is large the members values are close each other indicating their small standard deviation.

In fig. 5 (bottom right in each panel) we have reported also the ratio of the standard deviation of the ensemble mean over the average of the standard deviation for each member, which is as well a measure of the potential predictability of the indices (Alessandri et al., 2011). The intensity close to one indicate that the signal to noise ratio is high, and hence that their potential predictability is high. Large-scale monsoon indices have values larger than the local indices, and this may be related also to their dependence on less noisy fields like upper troposphere wind and geopotential height.

To identify the source of the forced potential predictability we can verify the correspondence between extreme monsoon predictable years and ENSO or IOD events. ENSO and IOD years (Table 1) have been classified using monthly SST anomalies based indices, i.e. NINO3 and IODM as previously defined. In particular, a year is classified as an ENSO-year when its NINO3 value exceeds 0.5 std from the mean (positive for El Niño and negative for La Niña) starting from November for at least 3 months (Trenberth, 1997). On the other hand, a year is classified as IOD when its IODM value averaged from September to November exceeds 1 std from the mean (positive for positive IOD event, and negative for a negative IOD event). For all the indices, we counted how many times extreme monsoon predictable years correspond to El Niño, La Niña or a positive or negative IOD event. The results are summarized in Table 2. For all the indices, at least half the time potentially predictable monsoon years coincide with an El Niño or a positive IOD event (see Table 2), actually in all the cases the two events co-occurred. On the other hand for negative IOD and La Niña events the correspondence is weaker (Table 2).

From fig. 5, 1987 can be identified as the year which has the largest potential pre-
dictability for all the indices: it corresponds to a positive IOD year co-occurring with a weak El Niño (Table 1). Actually, 1987 has been recorded as a drastic monsoon drought (Kumar, 1987). In the literature, 1987 and 1988 have been used as test beds to study the monsoon predictability as typical examples of a dry and a wet monsoon (Krishnamurti et al., 1995).

4 ISM characteristics during ENSO and IOD years

In this section most of the figures are types of Hovmoeller diagrams, time-latitude or longitude-time plots. In all of them the monthly anomalies shown are composite of ENSO, IOD or extreme monsoon events computed over a three years period (hereafter 3-yrs composite). In particular, the time axis is organized over three years centered in the year (0), when the event peaks, and it covers the year before (-1) and the year after (+1) the peak, from spring to fall. Extreme monsoon years are classified as strong or weak depending on monsoon indices exceeding 1 or -1 standard deviation from the mean.

ENSO and IOD years (listed in Table 1) are the same for the observations/reanalysis and AMIP-type ensemble, as the classification is based on monthly SST anomalies and monthly SST is prescribed in those experiments. According to the metric used for the classification, years in Table 1 correspond to the November-December peak value for ENSO and to the fall peak value for the Indian Ocean Dipole (i.e. 1997 El Niño year refers to the event developing during 1997 and peaking between November 1997 and December 1998, while 1997 positive IOD year refers to the event peaking in September-November 1997).

4.1 Analysis of El Niño and La Niña years

Fig. 6 shows the 3yrs-composite of precipitation anomalies averaged over India (i.e. 75-85E) and of zonal wind shear anomalies averaged between 60E and 90E during El Niño
and La Niña years (bold values in Table 1). In this case the year 0 corresponds to the developing phase of ENSO peaking from Nov(0) to Jan(+1), and with this methodology the summer season of year 0 corresponds to the ENSO developing phase, while that of year (-1) and that of year (+1) precedes and follows, respectively, an ENSO event. The anomalies are computed with respect to the monthly mean climatology of the period 1948-2003 in AMIP-type ensemble and observations, and of the whole century (1901-2000) in the coupled model experiment.

During the monsoon season of year (0), weaker than normal precipitation occurs over India, mainly in its second part (Aug(0)-Sep(0)) with reduced vertical zonal wind shear (fig. 6a). Boschat et al. (2011) firstly evidenced this asymmetry between the beginning and ending phase of the monsoon. The monsoon of the year before the El Niño evolution has stronger than normal precipitation, while the year that follows has weaker than normal rainfall north of 15N in the beginning of the monsoon season and stronger than normal precipitation in the southern part of India toward the end of the season (fig. 6a). As expected, over India increased/decreased zonal wind shear anomalies occur in correspondence of excess/deficit of rainfall (fig. 6a).

In the AMIP-type ensemble, the response of the monsoon characteristic during the summer season in correspondence of the evolution of the El Niño (fig. 6c) and the associated changes in the Walker circulation (as shown later) are realistic but the lack of ocean-atmosphere interaction prevents the Indian Ocean dynamics contribution to the biennial periodicity (Meehl et al., 2003; Wu and Kirtman, 2004). In the coupled model the signal is weak and for both the years preceding and following the monsoon the anomalies over India are not coherent in space (fig. 6c).

During La Niña years, the anomalies are reversed with respect to El Niño years even if the characteristics of precipitation and wind fields are not exactly opposite. In fact, in summer during the developing phase of La Niña, stronger than normal precipitation
anomalies occur over India with larger values in the demise phase of the monsoon season, associated with higher than normal zonal wind shear anomalies (fig. 6b): the monsoon tends to be delayed and weaker (stronger) during El Niño (La Niña) years. The summer preceding La Niña has weaker than normal precipitation, in agreement with the reverse of the El Niño case. On the other hand, the summer following the peak of La Niña event has precipitation still stronger than normal, at least in the starting phase of the monsoon, different from the El Niño case (fig. 6b).

In the model, during La Niña years precipitation anomalies are largely weaker than observed both in the AMIP-type ensemble and in the coupled model experiment (fig. 6d,f). In the AMIP-type ensemble, the intensification of the wind shear in summer is realistic in intensity and time evolution during the monsoon season (fig. 6d). In the coupled model, in the summer of year 0 the signal of a more intense monsoon in terms of wind shear is mainly concentrated in the late monsoon season (fig. 6f).

The comparison between forced and coupled model experiments performances in fig. 6 reveals that AMIP-type simulations are more proxy to observations than the 20th century experiment is, and this is mostly true for the El Niño years. This difference could be ascribed to the weakness of the ENSO-monsoon connection in the coupled model used (see also Cherchi et al., 2007). This shortcoming of the model could be related to its biases, as documented by Gualdi et al. (2003) and Guilyardi et al. (2003), in the simulation of the basic state of the Pacific Ocean, like the common westward extension of the SST anomalies (Terray et al., 2005). These biases in fact could effect the location of subsidence in the Western Pacific and Indian Ocean sector (Cherchi et al., 2012).

4.2 Strong and weak monsoon years: Differences between indices

The ENSO-monsoon connection is interpreted in terms of the modulation of the Walker circulation, that can be represented with 200 mb velocity potential. Fig. 7 shows the
The composites are built as described before, but the graphs are longitude versus time as the fields are averaged between 10S-10N. The region is chosen as it corresponds to the maxima in the evolution of the Walker cell (Lau and Yang, 2002). Here strong and weak monsoon years are classified based on IMI index. In the model, both for AMIP-type ensemble and for the coupled model experiment, the patterns shown for IMI do not differ from the same analysis applied to IMR and MTG indices (not shown), while in the reanalysis the conclusions may be different (which will be further discussed after the model outputs analysis). In the AMIP-type ensemble the indices are highly correlated each other, but we cannot exclude that this lack of variance in the model may be also influenced by biases in the coupling between rainfall and large-scale dynamics.

In the coupled model, negative (positive) 200 mb velocity potential anomalies over India peaking in summer are associated with upper troposphere divergence (convergence) and increased (decreased) low-level convergence over the region (fig. 7c,d): the patterns are almost symmetric comparing strong and weak monsoon years. The SST pattern has positive (negative) anomalies in the Pacific region during the summer monsoon season and in the months before. In the eastern part of the Indian Ocean weak positive (negative) anomalies develop after July (fig. 7c,d) in strong (weak) monsoon years. This pattern represents the enhanced dipole structure of the Indian Ocean in this model (Cherchi et al., 2007).

In the AMIP-type ensemble the characteristics are comparable with the coupled model experiment except that both SST and 200 mb velocity potential anomalies are larger during the summer monsoon season of year 0 (fig. 7a,b). In the AMIP-type ensemble the monsoon intensity is directly related with the simultaneous SST in the Pacific Ocean that modulates the dichotomy of subsidence regions between the Asian and the Pacific sectors. On the other hand, in the coupled model experiment the SST anomalies of the preceding
season may change the atmospheric circulation patterns interacting with the anomalies in
the Asian sector for strong monsoon years.

In the reanalysis the composite of IMI, IMR and MTG varies, suggesting different
mechanisms at work in providing extreme monsoon rainfall and winds over India. Fig. 8
shows SST and 200 mb velocity potential composite for strong and weak monsoon years
classified using IMI, IMR and MTG monsoon indices. In all the cases, the summer of year
0 is characterized by upper troposphere divergence (convergence) over the Indian Ocean
sector in correspondence of stronger (weaker) than normal monsoon (fig. 8), but differences exist in the SST pattern potentially forcing (interacting with) those atmospheric
anomalies.

IMI and IMR composites seem to represent two different conditions in terms of con-
temporary or precursor Pacific Ocean SST patterns influence. In fact, in IMR cases,
starting from the spring of year 0, positive (negative) SST anomalies develop in the re-
more central-eastern Pacific sector and positive (negative) velocity potential anomalies
in the upper troposphere peak over India thus providing weaker (stronger) than normal
monsoon conditions (fig. 8c,d). On the other hand, in IMI cases negative (positive) SST
anomalies in the Pacific sector in the winter before the peak (i.e. Oct(-1)-Jan(0)) pre-
cedes the development of positive (negative) 200 mb velocity potential anomalies typical
of deficit (excess) rainfall conditions over India (fig. 8a,b).

In MTG cases the SST anomalies in the Pacific sector are larger than in the other cases
and they are associated with anomalies of the same sign in the Indian Ocean developing in
correspondence of the evolution of the monsoon season (fig. 8e,f). This figure shows how
different condition in the Indian-Pacific sector may provide similar patterns over India.
This result reflects the complexity of the relationship between ENSO, the monsoon and
the Indian Ocean SST.

The list of the years used for the composites shown in fig. 8 are reported in Table 3.
For each index, the years corresponding to effective floods or droughts Indian monsoon events, according to the Indian Institute of Tropical Meteorology (IITM) classification (see www.tropmet.res.in/~kolli/mol/Monsoon/Historical/air.html), are evidenced. For IMI and IMR, most of the events are effective extremes monsoon years, and even all the other matches with the sign of the ISM anomaly. On the other hand, the number of events in the MTG composite are fewer than in the other cases and few of them correspond to effective flood or drought years. If we restrict the analysis considering only the events that correspond with effective drought and flood monsoons, the main features just described are unchanged, even the SST pattern in the Indian sector (not shown).

4.3 Comparison between ENSO and IOD cases

To compare ISM characteristics during ENSO and IOD years, precipitation and zonal wind shear composites are computed also for positive and negative IOD events (fig. 9). In this case the year 0 corresponds to both the developing and peaking phase of IOD from Jul(0) to Nov(0). In the reanalysis a positive (negative) IOD peak is preceded by weaker (stronger) than normal monsoon rainfall and weaker (more intense) zonal wind shear (fig. 9a,b), even though the signals are small. In the positive IOD case Jun(0)-Jul(0) negative anomalies are followed by positive anomalies in rainfall mainly in Aug(0)-Sep(0) north of 20N (fig. 9a). In the negative IOD cases, the positive precipitation anomalies are particularly small and hardly identifiable. In the coupled model, the anomalies are weak and not coherent in space (fig. 9e,f), as for the ENSO case. In the AMIP-type ensemble, the anomalies during the summer monsoon period are large and extend for the whole monsoon season (fig. 9c,d).

To relate the results discussed above with the evolution of ENSO and IOD events, we have repeated SST and 200 mb velocity potential composite analysis for El Niño/La Niña and positive/negative IOD years (fig. 10 and fig. 11, respectively). In this case results
from reanalysis and coupled model experiment are shown. In the Pacific basin positive (negative) SST anomalies develop from spring of year 0 to the summer of year +1 and they are preceded by anomalies of the opposite sign, but weaker, in the spring-summer of year -1 during El Niño (La Niña) events (fig. 10a,b). Over the Indian Ocean a dipole structure develops in correspondence of the El Niño years from July and it peaks in fall (fig. 10a). During La Niña years, the dipole signature in the Indian Ocean is weaker than during El Niño, and the negative anomalies in the western part of the basin are larger than the positive one in the east (fig. 10b).

During positive IOD events positive and negative SSTA in the western and eastern side of the Indian Ocean, respectively, are associated with positive SSTA in the Pacific Ocean in the contemporary season from April (0) to April (+1) (fig. 10c). In negative IOD cases, SSTA in both Indian and Pacific sectors are of the opposite sign but weaker in intensity: from this composite it seems that the IOD signal is dominated by the anomalies in the western part of the basin (fig. 10d). In the upper troposphere, the peak of the anomalies occur from spring to spring with negative anomalies in the Pacific sector and positive ones over the Indian region, corresponding to ENSO characteristics and explaining weakening of convergence. The anomalies are opposite during La Niña (fig. 10).

In the coupled model the SSTA and their time evolution in the Pacific Ocean are realistic and comparable with the observations, but the dipole signature in the Indian Ocean is stronger than observed, at least in the El Niño case, and it starts from spring (fig. 11a). During IOD years in the coupled model the anomalies are exactly symmetric with positive (negative) dipole anomalies in the Indian Ocean and positive (negative) SSTA in the Pacific sector developing from Jul (-1) and expanding westward (fig. 11c,d). In the model the IOD signal is large as this coupled model is particularly sensitive to the precipitation/wind feedback in the eastern part of the Indian Ocean (Gualdi et al., 2003; Cherchi et al., 2007). Differently from the observations, during positive (negative) IOD events
dipole anomalies in the Indian Ocean are preceded by positive (negative) SSTA in the Pacific sector propagating from the year before (fig. 11c,d).

In recent decades El Niño and positive IOD events co-occurred in most of the cases (Ashok et al., 2001). In particular of ten positive IOD events classified in Table 1, five of them are also El Niño years (eight if we consider a 0.5 std threshold for the El Niño year classification). On the other hand, only one negative IOD co-occurred with La Niña events (they would be three if considering a weaker threshold for La Niña years classification) and most of them occurred before the 80s (Table 1). In the coupled model experiment, a similar behavior is found with half of the positive IOD events occurring in correspondence of El Niño years, and a few (two over eleven in a century) negative IOD events occurring during La Niña years. To distinguish the monsoon characteristics during El Niño and during positive IOD years we tried to separate the events as pure IOD (both positive and negative), pure ENSO (both El Niño and La Niña) and as co-occurring (positive IOD with El Niño and negative IOD with La Niña) events. Table 4 summarizes the results of the above classification with the list of the years as resulting from the HadISST dataset, and with the number of the events considered in the model. In some cases the number of the events selected is quite small (i.e. pure El Niño, or co-occurring negative IOD and La Niña events), hence we decided to focus on those cases with a sample robust enough to draw some conclusions. According to that, 3-years composite of SST and 200 mb velocity potential anomalies for pure positive and pure negative IOD, co-occurring positive IOD and El Niño and pure La Niña events are shown in fig. 12 for HadISST and NCEP collections and for the coupled model results.

During positive and negative IOD events, SST and 200 mb velocity potential anomalies are almost symmetric in both re-analysis and model. In fact, positive (negative) upper tropospheric velocity potential anomalies occur in summer-fall of year 0 over the Indian sector during positive (negative) IOD events and they correspond to weak (strong)
monsoon characteristics (fig. 12a,c,e,g). In these cases, the main difference between the re-analysis and the coupled model is in the Pacific sector. In fact in the reanalysis the SSTA change from negative in spring-summer of year (-1) to positive in summer-fall of year (0) to negative again during spring-summer of year (+1) for positive IOD events, and the reverse occurs for negative IOD events (fig. 12a,c). On the other hand, in the model the SSTA in the Pacific sector oscillates from positive from Apr(-1) to Jul (0) to negative from Apr(+1) onwards during positive IOD events, and the reverse occurs during negative IOD events (fig. 12e,g). When positive IOD events and El Niño co-occur SST in the Pacific-Indian oceans sector and upper tropospheric velocity potential anomalies over India are larger than in pure cases in both re-analysis and coupled model experiment (fig. 12b,f). As previously mentioned, the model tends to overestimate the negative SSTA in the eastern side of the Indian Ocean (fig. 12f).

5 Changes in the ENSO-monsoon connection

Fig. 13 shows the correlations between ENSO, IOD and monsoon rainfall considering a 19 years sliding window in the data collections. The x-axis in the figure refers to the starting year of the 19 years correlation window. The dotted line corresponds to the correlation coefficients between NINO3 and IMR, so it represents the ENSO-monsoon connection. According to the figure since the beginning of the reanalysis record the relationship between ENSO and the monsoon is strong and negative, but since the middle of the 70s decade it starts to weakens up to becoming non-significant during the 90s and onwards.

A definite explanation for the changes occurring to the ENSO-monsoon connection has not been identified yet. Among possible explanations, changes in ENSO itself (Kumar et al., 2006), the global warming (Ashrit et al., 2001), the larger occurrence of IOD events (Ashok et al., 2004a) have been investigated. In fig. 13 the correlation coefficients between NINO3 and IODM (solid line) and between IODM and IMR (dashed line) are
plotted as well to investigate more the role of the IOD in the changes occurring to the ENSO-monsoon relationship. The correlation between ENSO and IOD is strong positive and significant since the beginning of the time record considered, but it seems to be larger after mid 60s. However, changes in the intensity of the dotted and solid lines in fig. 13 are not evidently linked. That is, the ENSO-IODM correlation can be high both when the ENSO-monsoon connection is strong and significant and when it is weak and non-significant (i.e. after mid-80s). At the same time, the IOD-monsoon correlation shows multidecadal variability: it is negative and significant between mid 60s and mid 70s, while it is non-significant for the other periods. Decadal IOD signals, related with sub-surface ocean dynamics, have been investigated comparing oceanic reanalysis and coupled model experiments, where they appeared as a decadal modulation of interannual IOD events (Ashok et al., 2004b).

Fig. 13 provides a picture with periods having completely different characteristics in terms of mutual correlation intensities between ENSO, IOD and ISM in the reanalysis. In particular, in the first part of the record the ENSO-monsoon connection is strong, while the IOD-monsoon connection is non-significant and the IOD-ENSO correlation shows a change from non-significant to positive values. Then in the middle of the time record, the IOD-ENSO correlation intensifies and the monsoon-IOD correlation becomes negative and significant. In this framework, the ENSO-monsoon connection remains strong negative and significant. Finally toward the end of the record while the ENSO-IOD relationship remains strong, the others two start to decrease up to becoming non-significant. This result evidences how the mutual relationships are strictly connected but with a quite complex behavior. For example, the change around mid-70s of the IOD-monsoon relationship could correspond or be related with the weakening of the ENSO-monsoon connection, or both could be related to the changes occurring to ENSO itself (Kumar et al., 2006).

Before analyzing more the three periods identified we open a parenthesis on the model
As previously discussed, the coupled model has a weak ENSO-monsoon correlation. On the other hand, the correlations between IODM and IMR, and between NINO3 and IODM are large. In particular, the large IOD-monsoon relationship in summer could negatively influence the ENSO-monsoon connection as found also for the NCEP forecast model (Achuthavarier et al., 2012). Applying a 19-years sliding window to the correlation in the coupled model indices, it is not possible to identify drastic or periodic changes in the connection (not shown). Coupled models generally have difficulties in having this sort of changes or in general they are not able to reproduce climate shifts (i.e. Guilyardi, 2006, for ENSO).

The AMIP-type ensemble results have biases as well but the distinction between the correlations computed from the ensemble mean or as average of the members correlation gives some interesting outcomes. Fig. 14 shows the 19-years sliding correlation between ENSO and the monsoon (in the upper panel) and between the IOD and the monsoon (in the lower panel). In particular, the correlation coefficients between NINO3 and IMR are negative and significant up to mid’70s considering the ensemble mean (fig. 14a). On the other hand the average of the 9 members sliding correlation is almost never significant (fig. 14a). This result is consistent with the idea that the changes in the ENSO-monsoon connection depend on the changes occurred to ENSO itself, as in the AMIP-type ensemble mean the main contribution comes from the SST forcing, while the mean of the member correlation should contain the signal from the internal variability. The changes occurring to ENSO may be related to the different position of the SSTA peak of ENSO events in recent decades, as it has been recently discussed (Kumar et al., 2006).

Considering the correlation between IODM and IMR, the average of the 9 members correlations is never significant (fig. 14b, dashed line), while the correlation of the ensemble mean is negative and significant (as in the observations) in the first part of the record but not in the second one (fig. 14b, solid line). In this case, model and observations
correspond for short periods with starting years between 1960 and 1965. While in the
observations it is possible to identify a sort of decadal signal, in the AMIP-type ensemble
mean there are sort of unrealistic shifts around 1960 and 1980. In this case the role of
the SST forcing is not dominant as in the ENSO-monsoon, but there is also an important
contribution from the internal variability component. We may speculate that the disagree-
ment between model and observations is mostly related with the inability of this kind
of experiments to have a realistic internal variability, as they miss the ocean-atmosphere
coupling that is known to be crucial for Indian Ocean dynamics (Wu and Kirtman, 2004).

As mentioned before, considering the lines in fig. 13 and their interaction with the sig-
nificance threshold we choose three sub-periods to perform some more analysis in terms
of changes in ENSO-monsoon and IOD-monsoon relationship and their seasonal evo-
lution in the reanalysis. The three periods are: 1949-1969 where the ENSO-monsoon
connection is strong, while the IOD-monsoon connection is non-significant; 1962-1982
where both the connection are strong and 1980-2000 where the ENSO-monsoon connec-
tion is weak and the IOD-monsoon connection is non-significant.

Fig. 15 shows the time regression of the Indian summer monsoon rainfall index (IMR)
on SST and 200 mb velocity potential for three different seasons: spring (AMJ mean)
before the monsoon peak, summer (JAS mean) in correspondence of the monsoon peak
and fall (OND mean) just after the monsoon peak. In summer, the Indian and Pacific sec-
tors are characterized by opposite velocity potential anomalies in the upper troposphere
with negative values in the former and positive values in the latter, in agreement with
the typical ENSO teleconnection pattern (fig. 15b,e,h). In terms of SST, in the second pe-
riod positive (negative) anomalies appear in the eastern (western) Indian basin, differently
from the other two periods. In agreement with a stronger monsoon-IOD relationship, in
this period larger negative SST anomalies are found in the northern Indian basin (both in
the Arabian Sea and in the Bay of Bengal) because of the interaction between the basin
and the monsoon rainfall (Cherchi et al., 2007).

However, the main differences between the three periods are found in the North Pacific and in the Atlantic sectors. In particular, in the last period when the ENSO-monsoon connection weakens, strong positive anomalies are found in the western Atlantic sector around 30N, with slight negative anomalies in the subtropical sector (Goswami et al., 2006; Kucharski et al., 2008), and in the western North Pacific (fig. 15h). On the other hand, before the 70s the positive anomalies in the North Pacific were mainly localized in the centre of the basin (fig. 15b). This difference may be related with the changes occurred in the North Pacific after 1976 (Miller et al., 1994) and to the associated differences in the ENSO teleconnections (Deser and Blackmon, 1995). This analysis cannot be considered exhaustive, but it highlights interesting issues in the ENSO-monsoon-IOD relationship on timescales with lower than interannual frequencies, which is worth of further studies.

6 Conclusions

Major portion of the Indian summer monsoon (ISM) variability is related to the variability in the Indian-Pacific sector. In this study, ISM variability has been investigated focusing on the monsoon characteristics in correspondence of ENSO and IOD events. The analysis has been performed comparing re-analysis and data with atmospheric (AMIP-type with forced interannually varying SST) and coupled model experiments.

ISM variability has been expressed here in terms of precipitation and circulation-based indices. In particular, large-scale monsoon indices, like DMI and MTG based on zonal wind shear and mid-tropospheric thickness, respectively, have been compared with local indices, like IMI and IMR based on low-level zonal wind and precipitation, respectively. Both model outputs and reanalysis, realistically represent the precipitation pattern variation in summer over India. In the AMIP-type ensemble the inter-annual variability of all the indices is significantly correlated with the reanalysis in terms of the ensemble mean,
indicating that the forced SST component is important.

Using the AMIP-type ensemble we define and compute the potential predictability of
the monsoon indices as the ratio of the ensemble mean over the standard deviation among
the members for each monsoon index and for each year: the larger the value, the larger
the potential predictability for that year. Strong and weak monsoon characteristics have
comparable predictability in terms of large-scale and local monsoon indices. In the sample
analyzed, about half of the more predictable extreme monsoon years coincide with an El
Niño co-occurring with a positive IOD event. The result is consistent for all the indices.

Because of the seasonal evolution of the events, the monsoon in summer may be nega-
tively influenced by the developing phase of ENSO, which peaks in the following winter
and which may interact and influence the IOD anomalies in the subsequent fall. The
3-years composite analysis of precipitation and seasonal wind shear during ENSO and
IOD events reveals that during El Niño and positive IOD years monsoon precipitation
is reduced with weakened wind shear, while during La Niña and negative IOD events
the monsoon characteristics are opposite with larger than normal rainfall and enhanced
zonal wind shear. Actually, the ISM characteristics in El Niño/La Niña years or in pos-
itive/negative IOD events are not exactly symmetric. In fact, while during La Niña and
negative IOD year the monsoon anomalies are almost uniform within the summer season,
in the opposite cases (El Niño and positive IOD) there is a dipole in the anomalies within
the season (i.e. anomalies in the demise phase of the monsoon change sign).

In the model composites, precipitation and wind shear anomalies are weaker than ob-
served, mainly in the IOD cases. During ENSO events, AMIP-type ensemble results are
more proxy to observations than the coupled model simulation is, and this could be also
related to the weak ENSO-monsoon connection in this coupled model. In the AMIP-type
ensemble the monsoon intensity is directly influenced by the simultaneous SST in the
Pacific Ocean and its biennial characteristics are not captured because the lack of air-sea
interactions in the Indian Ocean.

The composites of SST and 200 mb velocity potential during strong and weak monsoon
years classified based on different monsoon indices highlight how different SST condi-
tions in the Indo-Pacific sector may provide similar monsoon characteristics over India,
reflecting the complexity of the relationship between ENSO, Indian Ocean SST and the
monsoon.

In the reanalysis as well as in the coupled model most of the positive IOD events co-
ocurred with an El Niño, while that is not the case for La Niña. A further classification
has been performed to separate years with pure IOD or ENSO events from years with
co-occurring ENSO and IOD. Because of the number of cases involved, pure El Niño
years as well as La Niña and negative IOD co-occurring events have not been taken into
account. When positive IOD and El Niño co-occur the SST anomalies in the Indo-Pacific
sector and 200 mb velocity potential anomalies over India are larger than in the pure
cases. However, the model tends to overestimate the signal in the Indian Ocean, mainly
in its eastern part.

The relationship between ENSO, IOD and the monsoon is not constant in time. In fact,
in the record analyzed (i.e. 1948-2003) it is possible to distinguish periods with strong
ENSO-monsoon connection, lack of IOD-monsoon connection and increasing ENSO-
IOD relationship, or with both strong and negative IOD-monsoon and ENSO-monsoon
connections, or with not-significant monsoon-ENSO and monsoon-IOD but with a strong
ENSO-IOD relationships. The main difference between the periods identified is in the
SST pattern of North Pacific and Atlantic sectors. When the ENSO-monsoon connection
weakens, strong positive SST-IMR correlation is found in the western north Atlantic and
north Pacific Ocean, the latter probably associated with the decadal changes of the North
Pacific sector and the associated ENSO teleconnection. In the model it is not possible to
identify those types of decadal changes. However, results from the AMIP-type ensemble
suggest that while in the ENSO-monsoon case most of the correlation is driven by changes in the remote SST (and hence is somehow captured by the model), in the IOD-monsoon case changes in the correlation are not captured by the model, suggesting a predominance of its internal variability component and local model biases may influence as well its performance.

The study is quite heterogeneous in its analysis, but its main focus remains the analysis of the characteristics of the monsoon associated with ENSO and the IOD, spanning from composite analysis of specific classified events to the investigation of long timescales. The wide literature on the differences in the characteristics of ENSO during the last decades (Wang, 1995; Ashok et al., 2007; McPhaden and Zhang, 2009; Jung et al., 2011, among others) may question whether factors like the intensity of the anomalies, the position of the SST maxima and the dynamics related to the SST development may have different impacts on the monsoon intensity and variability. According to that and considering the IOD decadal changes (Ashok et al., 2004b; Yuan and Yin, 2008) as well, composite analysis on specific ENSO and/or IOD years is worth of future investigation. Even if the model has been found particularly weak in the analysis of the variability at lower than interannual frequency, the results from the reanalysis suggest an important influence on the monsoon from other oceanic sectors rather than from the Indian-Pacific alone.

Acknowledgements. We are grateful to the anonymous reviewers whose comments help to improve the manuscript. We acknowledge the EU FP7-INCO INDO-MARECLIM project for financial support. The support of Italian Ministry of Education, University and Research, and Ministry for Environment, Land and Sea through the project GEMINA is gratefully acknowledged as well. AC thanks Dr A Alessandri for helpful comments on predictability issues.
References

GCM: remote and local effects. Int J Climatol 32: 1640–1653

Cherchi A, Masina S and Navarra A (2008) Impact of extreme CO$_2$ levels on tropical climate: A
CGCM study. Clim Dyn 31: 743–758

Cherchi A, Navarra A (2007) Sensitivity of the Asian summer monsoon to the horizontal resolu-

Deser C, Blackmon M (1995) On the relationship between tropical and North Pacific SST vari-
a tions. J C lim 8: 1677–1680

Goswami BN (1994) Dynamic predictability of seasonal monsoon rainfall: Problems and
prospects. Proc Indian Nat Acad Sci 60A: 101–120

Goswami BN (1998) Interannual variations of Indian summer monsoon in a GCM: External con-

Goswami BN, Xavier PK (2005) Dynamics of internal interannual variability of the Indian summer
monsoon in a GCM. J Geophys Res 110 D24104

Goswami BN, Madhusoodanani MS, Neema CP, Sengupta D (2006) A physical mechanism for

Global Warming: Results from a High-Resolution Coupled General Circulation Model. J Cli-
mate 21 5204-5228

tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20: 567–582

coupled GCM. J C lim 16: 1141–1158

Clim Dyn 26: 329–348

Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson

surface temperature and rainfall over India and Sri Lanka. Mon Wea Rev 111: 517–528

Walker GT (1924) Correlation in seasonal variations of weather, IX: A further study of world weather. Mem Ind Meteor Dept 24: 275–332

Table 1. List of El Niño, La Niña, positive and negative IOD years, based on the values of NINO3 and IODM indices, respectively. IOD years are computed from values averaged in SON exceeding 1 standard deviation from the mean, and they mostly agree with previous classifications (Saji and Yamagata, 2003; Yuan and Yin, 2008, among others). ENSO years are shown based on NDJ values (see text for more details) exceeding 0.5 std (years exceeding 1 std are in bold). All El Niño/La Niña years in the table agree with US National Weather Service classification (http://www.cdc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.html).

<table>
<thead>
<tr>
<th></th>
<th>List of years</th>
</tr>
</thead>
</table>

Table 2. Fraction of extreme monsoon predictable years (yellow bins from fig. 5) corresponding to a positive IOD event (pIOD), an El Niño event, a negative IOD (nIOD) event and a La Niña event (columns from left to right) for IMR, IMI, DMI and MTG monsoon indices (rows from top to bottom). El Niño/La Niña and positive/negative IOD years are listed in Table 1.
Table 3. List of years corresponding to strong and weak monsoon events according to IMI, IMR and MTG values larger than 1 standard deviation from the mean, or lower than -1 standard deviation from the mean, respectively. Years in **bold** correspond to floods and drought Indian summer monsoon events according to AIR (All-Indian Rainfall) index from IITM website (www.tropmet.res.in/~kolli/mol/Monsoon/Historical/air.html).

<table>
<thead>
<tr>
<th>Monsoon index</th>
<th>Strong mons yrs (≥1 std)</th>
<th>Weak mons yrs (≤-1 std)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of event</td>
<td>List of years (HadISST)</td>
<td># of years (SSXX)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>pure ElNino</td>
<td>1957, 1965</td>
<td>3</td>
</tr>
<tr>
<td>nIOD/LaNina</td>
<td>1975</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4. List of years (second column) from the HadISST and number of years (third column) considered in the coupled model experiment (SSXX), respectively, of the events classified (from top to bottom) as: pure positive IOD (pIOD), co-occurring positive IOD and El Niño (pIOD/ElNino), pure El Niño, pure negative IOD (nIOD), co-occurring negative IOD and La Niña (nIOD/La Niña) and pure La Niña.
Figure Captions

Fig. 1. Annual cycle of precipitation (mm/d, shaded) and zonal wind shear (m/s, contours) zonally averaged between 60-90E for (a) CMAP and NCEP reanalysis, (b) AMIP-type ensemble mean and (c) coupled model experiment (SSXX). The zonal wind shear is computed as difference between lower and upper tropospheric zonal wind (U850 minus U200).

Fig. 2. JJA mean precipitation (mm/d, shaded) and 200 mb velocity potential ($\times 10^6$ 1/s2, contours with the thicker black line in correspondence of zero values) for (a) CMAP and NCEP reanalysis, (b) the AMIP-type ensemble mean and (c) the coupled model experiment (SSXX) outputs. (d) JJA mean SST (°C) for the HadISST dataset (contours, with the 28°C isotherm identified by the thicker red line), and JJA mean SST difference between the coupled model experiment and the HadISST dataset (shaded).

Fig. 3. Lagged correlation between JJA IMR and NINO3 (solid line) and IODM (dashed line) monthly anomalies indices for (a) CRU and HadISST datasets and (b) AMIP-type ensemble. Horizontal lines in both panels correspond to the threshold values for the statistical significance at 90%.

Fig. 4. Annual cycle of monsoon indices, (a) IMR, (b) IMI, (c) DMI and (d) MTG, for CRU and NCEP data (black line), AMIP-type ensemble (blue line) and coupled model experiment (SSXX, green line).

Fig. 5. Potential predictability (PP) for the monsoon indices, (a) IMR, (b) IMI, (c) DMI and (d) MTG, in the AMIP-type ensemble. Yellow bin correspond to PP values in the tails (exceeding 10th and 90th percentiles) of the distribution. Black stars correspond to the index values for each member of the ensemble to evidence the ensemble spread. The value in the bottom right of each
panel is the ratio of the standard deviation of the ensemble mean and the average of the standard deviation of each member (see text for more details).

Fig. 6. 3-years composite of precipitation (mm/day, shaded) and zonal wind shear (m/s, contours) anomalies averaged over the Indian continent (75-85E) and in the region 60-90E, respectively. The values shown are computed as El Niño and La Niña composites for (a,b) CRU and NCEP datasets, (c,d) AMIP-type ensemble and (e,f) coupled model experiment (SSXX). In the model experiments, precipitation is masked over ocean to consider land-points only.

Fig. 7. 3-years composite of SST (°C, shaded) and 200 mb velocity potential (× 1.e+6 1/s², contours) anomalies averaged between 10S and 10N. The values shown are computed as strong and weak monsoon years composites for (a,b) AMIP-type ensemble and (c,d) coupled model experiment (SSXX). Strong/weak monsoon years are classified based on IMI index.

Fig. 8. Same as fig. 7, but strong and weak monsoon years are classified based on (a,b) IMI, (c,d) IMR and (e,f) MTG indices in the HadISST and NCEP datasets.

Fig. 9. Same as fig. 6, but the composites are computed for positive (left panels) and negative (right panels) IOD events.

Fig. 10. 3-years composite of SST (°C, shaded) and 200 mb velocity potential (× 1.e+6 1/s², contours) anomalies averaged between 10S and 10N. The values shown are (a,b) El Niño and La Niña composites and (c,d) positive and negative IOD composites for HadISST and NCEP datasets.

Fig. 11. Same as fig. 10, but for the coupled model experiment (SSXX).

Fig. 12. Same as fig. 10, but the values shown are composite of (a,e) pure positive IOD (pure pIOD), (b,f) combined positive IOD and El Niño (pIOD/ElNino), (c,g) pure negative IOD (pure nIOD).
nIOD) and (d,h) pure La Niña (pure LaNina) events in the HadISST and NCEP datasets (upper panels) and in the coupled model experiment (SSXX, lower panels).

Fig. 13. 19 years sliding correlations between IODM and NINO3 (black solid line), IODM and IMR (dashed line), NINO3 and IMR (dotted line) from the CRU and HadISST datasets. Solid horizontal lines indicate the statistical significance threshold at 95%. Years in the x-axis correspond to the starting year of the 19 years correlation window.

Fig. 14. 19 years sliding correlations between (a) NINO3 and IMR and (b) IODM and IMR in the AMIP-type ensemble. In both panels, ensemble mean value (solid line) and the average of the correlation for each member of the ensemble (dashed line) are shown. The solid horizontal line corresponds to the statistical significance threshold at 95%. Years in the x-axis correspond to the starting year of the 19 years correlation window.

Fig. 15. Time-regression of Indian summer monsoon rainfall (IMR) on SST (°C, shaded) and 200 mb velocity potential (× 1.e+6 1/s², contours) during spring (AMJ mean, upper panels), summer (JAS mean, middle panels) and fall (OND mean, lower panels) for (a,b,c) 1949-1969, (d,e,f) 1962-1982 and (g,h,i) 1980-2000 time periods.
Fig. 1. Annual cycle of precipitation (mm/d, shaded) and zonal wind shear (m/s, contours) zonally averaged between 60-90E for (a) CMAP and NCEP reanalysis, (b) AMIP-type ensemble mean and (c) coupled model experiment (SSXX). The zonal wind shear is computed as difference between lower and upper tropospheric zonal wind (U850 minus U200).
Fig. 2. JJA mean precipitation (mm/d, shaded) and 200 mb velocity potential ($\times 10^6$ $1/s^2$, contours with the thicker black line in correspondence of zero values) for (a) CMAP and NCEP reanalysis, (b) the AMIP-type ensemble mean and (c) the coupled model experiment (SSXX) outputs. (d) JJA mean SST ($^\circ$C) for the HadISST dataset (contours, with the 28°C isotherm identified by the thicker red line), and JJA mean SST difference between the coupled model experiment and the HadISST dataset (shaded).
Fig. 3. Lagged correlation between JJA IMR and NINO3 (solid line) and IODM (dashed line) monthly anomalies indices for (a) CRU and HadISST datasets and (b) AMIP-type ensemble. Horizontal lines in both panels correspond to the threshold values for the statistical significance at 90%.
Fig. 4. Annual cycle of monsoon indices, (a) IMR, (b) IMI, (c) DMI and (d) MTG, for CRU and NCEP data (black line), AMIP-type ensemble (blue line) and coupled model experiment (SSXX, green line).
Fig. 5. Potential predictability (PP) for the monsoon indices, (a) IMR, (b) IMI, (c) DMI and (d) MTG, in the AMIP-type ensemble. Yellow bin correspond to PP values in the tails (exceeding 10th and 90th percentiles) of the distribution. Black stars correspond to the index values for each member of the ensemble to evidence the ensemble spread. The value in the bottom right of each panel is the ratio of the standard deviation of the ensemble mean and the average of the standard deviation of each member (see text for more details).
Fig. 6. 3-years composite of precipitation (mm/day, shaded) and zonal wind shear (m/s, contours) anomalies averaged over the Indian continent (75-85E) and in the region 60-90E, respectively. The values shown are computed as El Niño and La Niña composites for (a,b) CRU and NCEP datasets, (c,d) AMIP-type ensemble and (e,f) coupled model experiment (SSXX). In the model experiments, precipitation is masked over ocean to consider land-points only.
Fig. 7. 3-years composite of SST (°C, shaded) and 200 mb velocity potential (× 1.e+6 1/s², contours) anomalies averaged between 10S and 10N. The values shown are computed as strong and weak monsoon years composites for (a,b) AMIP-type ensemble and (c,d) coupled model experiment (SSXX). Strong/weak monsoon years are classified based on IMI index.
Fig. 8. Same as fig. 7, but strong and weak monsoon years are classified based on (a,b) IMI, (c,d) IMR and (e,f) MTG indices in the HadISST and NCEP datasets.
Fig. 9. Same as fig. 6, but the composites are computed for positive (left panels) and negative (right panels) IOD events.
Fig. 10. 3-years composite of SST (°C, shaded) and 200 mb velocity potential (× 1.e+6 1/s², contours) anomalies averaged between 10S and 10N. The values shown are (a,b) El Niño and La Niña composites and (c,d) positive and negative IOD composites for HadISST and NCEP datasets.
Fig. 11. Same as Fig. 10, but for the coupled model experiment (SSXX).
Fig. 12. Same as fig. 10, but the values shown are composite of (a,e) pure positive IOD (pure pIOD), (b,f) combined positive IOD and El Niño (pIOD/ElNino), (c,g) pure negative IOD (pure nIOD) and (d,h) pure La Niña (pure LaNina) events in the HadISST and NCEP datasets (upper panels) and in the coupled model experiment (SSXX, lower panels).
Fig. 13. 19 years sliding correlations between IODM and NINO3 (black solid line), IODM and IMR (dashed line), NINO3 and IMR (dotted line) from the CRU and HadISST datasets. Solid horizontal lines indicate the statistical significance threshold at 95%. Years in the x-axis correspond to the starting year of the 19 years correlation window.
Fig. 14. 19 years sliding correlations between (a) NINO3 and IMR and (b) IODM and IMR in the AMIP-type ensemble. In both panels, ensemble mean value (solid line) and the average of the correlation for each member of the ensemble (dashed line) are shown. The solid horizontal line corresponds to the statistical significance threshold at 95%. Years in the x-axis correspond to the starting year of the 19 years correlation window.
Fig. 15. Time-regression of Indian summer monsoon rainfall (IMR) on SST ($^\circ$C, shaded) and 200 mb velocity potential (\times 1.e+6 1/s2, contours) during spring (AMJ mean, upper panels), summer (JAS mean, middle panels) and fall (OND mean, lower panels) for (a,b,c) 1949-1969, (d,e,f) 1962-1982 and (g,h,i) 1980-2000 time periods.