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Abstract

In this paper, fluid source(s) and processes chimgahe chemical composition of VOCs
(Volatile Organic Compounds) in gas discharges fMmEtna and Vulcano Island (Sicily,
Italy) were investigated. The main compositionlsd Etnean and Volcano gas emissions is
produced by mixing, to various degrees, of “magaiatnd “hydrothermal” components.
VOCs are dominated by alkanes, alkenes and aramatith minor, though significant,
concentrations of O-, S- and CI(F)-substituted conmgls. The main mechanism for the
production of alkanes is likely related to pyrosysif organic matter-bearing sediments that
interact with the ascending magmatic fluids. Alkareze then converted to alkene and
aromatic compounds via catalytic reactions (dehyenation and dehydroaromatization,
respectively). Nevertheless, an abiogenic origimttie@ light hydrocarbons cannot be ruled
out. Oxidative processes of hydrocarbons at redbtihigh temperatures and oxidizing
conditions, typical of these volcanic-hydrotherrflaids, may explain the production of

alcohols, esters, aldehydes, as well as O- andaBAgeheterocycles. By comparing the
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concentrations of hydrochlorofluorocarbons (HCF@s)the fumarolic discharges with
respect to those of background air, it is possibldighlight that they have a geogenic
origin likely due to halogenation of both methanedaalkenes. Finally, CFC
(chlorofluorocarbon) abundances appear to be demsiwith background air, although the
strong air contamination that affects the Mt. Bumaaroles may mask a possible geogenic
contribution for these compounds. On the other hamal CFCs were detected in the
Vulcano gases, which are characterized by low antrdoution. Nevertheless, a geogenic

source for these compounds cannot be excludedeopatsis of the present data.

1. Introduction

A large number of studies have highlighted the terise of light hydrocarbons {€C),
mainly pertaining to the alkane, alkene and araengtoups, in fluids discharged from
volcanic-hydrothermal systems [Des Marais et a@81% Welhan and Lupton, 1987;
Porshnev and Bondarev, 1989; Giggenbach et alQ;1d8ngani et al., 1991; Giggenbach
and Corrales-Soto, 1992; Kiyoshu et al., 1992; Caipai et al., 1993, 1995, 2001, 2004;
Seewald, 1994; Sugizaki and Nagamine, 1995; Darlir®98; Capaccioni and Mangani
2001; Burnett et al., 2003; Taran and GiggenbadB2@iebig et al., 2009; Tassi et al.,
2007, 2009a,b, 2010a,b]. Global methane emissiamms Yolcanoes and other natural and
anthropogenic sources estimated by Etiope et 80gPwere used to calculate those of
other alkanes, such as ethane and propane [Etir@p€iacioli, 2009], which resulted up to
6 Tg yeal, i.e. significantly lower than the emission fluxeslé Tg yedr) required to
explain the present atmospheric amounts of these gecies [Rudolph, 1995].

Thermogenic decomposition of pre-existing organatter is widely accepted as the main
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genetic mechanism for volatile organic compound®(@$) in volcanic environments [Des
Marais et al.,, 1981, 1988; Capaccioni et al., 192995]. Nevertheless, abiogenic
hydrocarbon formation was also proposed to occmainral systems [e.g., Abrajano et al.,
1988; Szatmari, 1989; Sugisaki and Mimura, 1994jg&nbach, 1997; Sherwood-Lollar et
al., 2002; Taran et al., 2002, 2008; Etiope et 2011]. Among VOCs, the origin and
behavior of halogenated species in volcanic enwi@mt is of great interest due to their
strong environmental impact and health effectstedldo i) the key role they play as
primary agents of tropospheric and stratospheranezdepletion [Cicerone et al., 1974;
Molina and Rowland, 1974; Farman et al., 1985; Rowland Molina, 1994; Brune, 1996]
and ii) their contribution to global warming [Hough et al., 2001; Harnisch et al.,
2002a,b]. The occurrence of halocarbons in volcphimes [Cadle et al., 1979; Inn et al.,
1981; Leifer et al., 1981; Cronn and Nutmagul, B2Brasseur and Granier, 1992] and
gas emissions related to magmatic-hydrothermalrvess [Stoiber, 1971; Isidorov and
Zenkevich, 1985; Isidorov et al., 1990, 1992; Ga§in1995; Waheremberger et al., 1998,
2002; Jordan et al., 2000; Jordan, 2003; Schwanetredr, 2004; Frische et al., 2006] have
extensively been studied.

Halocarbons are naturally produced from biogenitivigg in soils, from biomass
combustion and from oceans [Lovelock, 1975; Andrd886; Laturnus and Adams, 1998;
Keene et al., 1999; Khalil et al., 1999; Lobertakt 1999; Rudolph et al., 2000; Gribble,
2010]. Halocarbons in soils and sediments can ighibt be produced during the oxidation
of organic matter caused by reduction of redoxspaiuch as Béand Fé&" [Keppler et al.,
2000; 2002], and through Fenton-like reactions omie substances [Huber et al., 2009].

However, the recent increase of halocarbon coratmbis in air, especially that of
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chlorofluorocarbons (CFCs), is commonly ascribe@rthropogenic activities [Gamlen et
al., 1986; Butler et al., 1999; McCulloch et al003]. In most cases, volcanic halocarbons
were interpreted as related to an atmospheric ed@tiber et al., 1971; Rasmussen and
Rasmussen, 1980; Inn et al., 1981; Rasmussen &08ll; Pereira et al., 1982; Fink, 1983;
Brasseur and Granier, 1992, Gaffney, 1995; Jortlah,2000; Jordan, 2003, Frische et al,
2006]. However, Schwandner et al. [2004] reportedchemical evidence supporting the
idea of a natural volcanogenic source for halocasboeasured in the soil of La Fossa cone
at Vulcano Island (Italy).

The debate on the origin of halocarbons and, ireggnof VOCs in volcanic emissions is
complicated by the fact that the proposed hypothese based on different datasets that
can be compared only with difficulty, as a resultamlopting different sampling and
analytical approaches.

In this paper, VOC geochemistry in volcanic flu@ischarged from Mt. Etna and Vulcano
Island (Southern ltaly) was investigated by GC-M&ag Chromatography-Mass
Spectrometry) on samples collected using solidst(&T) [Tassi et al., 2012]. A major aim
of this study was to elucidate the possible sosjcafd processes controlling VOCs
emitted from these volcanoes, emphasizing the geaspects of halocarbons. Measured
concentrations of halocarbons in gas discharge® fittese two volcanic systems were
compared to those expected considering the fraafoair present in our gas samples,
calculated on the basis of their Ar concentratiGsh a detailed evaluation of halocarbon
contribution due to background air, which represe¢né main novelty of the present paper,
is of fundamental importance to assess if thesecgagpounds, commonly ascribed to

anthropogenic activity, may have a geogenic soureelcanic fluids.
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2. Volcanological background

2.1. Mount Etna

Mount Etna (eastern Sicily) is a strato-volcanoltbon a lower tholeitic shield unit
[Chester et al., 1985; Tanguy et al., 1997] ancted at the collision boundary of the
African and European blocks [Barberi et al., 1974je activity of this volcano, which is
the largest in continental Europe (~1,200%ksh total surface with a maximum height of
3,300 m a.s.l.), is controlled by the intersecid™NNW- and NNE-trending fault systems.
The actual thickness of the Etnean volcanic prajuemplaced over the sedimentary
basement, is about 2,000 m [Ogniben, 1966]. MoumiaBs one of the most active
volcanoes in the world, being characterized byuesq eruptions and a persistent carbon
dioxide (CQ)-rich plume, whose total emission was estimatecbtoespond to 10% of the
global emission of volcanic GQGerlach, 1991]. The frequent eruptive activitylphd et

al. 2006] heavily affects the morphology of the suitrarea [Neri and Acocella, 2006; Neri
et al., 2008], which presently consists of a cerdrater (Voragine) surrounded by three
active cones (Bocca Nuova, NE Crater, and SE Criigr 1), and is cut by N-S oriented
fracture systems, mainly related to by extensiatiass produced by magma ascent [Neri
et al., 2004]. Mount Etna lies in an anorogenicezand it is characterized by OIB-type
magmas with geochemical and isotopic features aintd those of arc-related volcanoes
[Schiano et al., 2001; Tonarini et al.,, 2001]. Actog to Liotta et al. [2010], fluids
released from the magmatic system are dischargedtive atmosphere from both the
summit craters and the fumaroles located at thercriens. Severe air contamination due to

the high permeability of the feeding fractures amddest fluid contribution from a
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peripheral hydrothermal reservoir heavily mask thagmatic component of the gas
emissions.

2.2. Vulcano Island

Vulcano is the southernmost island of the Aeoliamhipelago (Sicily, southern lItaly), a
volcanic arc generated by subduction beneath threh@yian Sea [Barberi et al., 1974,
Beccaluva et al.,, 1985]. Since the last eruptionl&88-1890 [Mercalli, 1891; Keller,
1980], Vulcano has experienced intense fumarolivig mainly from the La Fossa cone.
Two main periods of volcanic unrest, marked byrarg} increase of fumarolic activity,
affected this volcano, in 1913-1923 [Sicardi, 194hld in 1977-1993 [Martini, 1993;
Chiodini et al.,, 1995], when temperatures up to @@ 690 °C, respectively, were
measured at the crater fumaroles. In 2004-200&n@malous seismic activity, as well as
significant changes of both the composition of thater fumaroles and the diffuse €O
degassing from the flanks of La Fossa cone weresuned, providing evidence of a third
volcanic unrest [Granieri et al., 2006]. Theseasisvere interpreted as related to episodes
of fluid transfer from stationary magma bodiesceimo geophysical evidence of magma
migration was detected [Barberi et al.,, 1991; Cimoet al., 1992; Bonaccorso, 2002;
Granieri et al., 2006]. Several geochemical conadptnodels were proposed to describe
the fluid circulation system feeding the gas disgka of Vulcano Island [Carapezza et al.,
1981; Cioni and D'Amore, 1984; Panichi and Not®2Z;9Bolognesi and D'’Amore, 1993;
Chiodini et al., 1993, 1995, 2000; Martini, 1996apasso et al., 1997]. It is generally
accepted that the chemical composition of fumartlicis is characterized by the presence
of magmatic and hydrothermal components, the last@owing significant seawater

contribution, that mix at different degrees. Therent exhalative activity mainly occurs in
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the northern sector of La Fossa crater, where oigiheperatures of the fumarolic vents are

<400 °C, and from boiling and bubbling pools lochite the Levante beach (Fig. 2).

3. Sampling and analytical methods

3.1. Sampling method

At Mount Etna, gas samples were collected from fuhes located i) along the rims of
Voragine (VOF7, VO1, VO2, SE1, SE2 and SE3 samphes) Bocca Nuova (BN1 and
BN2 samples) craters (~3,300 m a.s.l.), ii) at @alel Filosofo (TF sample), a touristic site
in the SE sector of the summit area (~2,750 m.g.ard iii) at the Bottoniera craters (BT
sample) in the NW flank of the volcano (~2,500 ms.I3, which opened during the
2002/2003 eruption (Fig. 1). Two air samples wenkected from distal sites located few
km NW of the NE crater (§) and at Bosco Ragabo (W (Fig. 1).

At Vulcano Island gas samples were collected framdrolic gas discharges positioned in
the northern sector of La Fossa cone (FNB and F#pkss) and from bubbling gas
exhalations in the Levante beach (FM and IS samptesr the village of Vulcano (Fig. 2).
Two air samples were collected from the proximitywaolcano village (M) and from La
Fossa crater rim (&), respectively.

Gas sampling for the determination of the inorgagas species, GHand G-C, alkanes
and alkenes was carried out using pre-evacuatechl6@lass flasks equipped with a
Thorion® valve and filled with 20 mL of a 4 M NaC&hd 0.15 M Cd(OH)suspension to
trap soluble and acidic gas species in the liqindsp and separate S(@issolved in the
liquid phase) and % (precipitating as CdS) to prevent any reactiorth& gas phase

[Montegrossi et al., 2001]. Fumarolic gas was cgedento the sampling flask using a 0.7
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m long titanium tube, inserted as deeply as posdiio the vent and connected to a
sampling line constituted by dewared glass tubd®raas bubbling gases were collected
using a funnel positioned up-side-down above théession (Fig. 3) [Montegrossi et al.,
2001; Vaselli et al., 2006]. The analysis of VOE€s¢luding those species analyzed in the
sampling flask head-space, was carried out on saEmpbllected in solid traps (ST)
consisting of stainless steel tubes packed witkeethedsorbent beds (Carbosieve 111,
Carboxen B and Carboxen C; Supelco Inc., USA).dStthps were preferred to SPME
(Solid Phase Micro Extraction) fibers having a thphase adsorbent assembly
(divinylbenzene-Carboxen-polydimethylsiloxane) sanito that of the ST [Shirey, 1999],
as a large quantity of sample can be stored irfstheallowing the detection of compounds
at very low concentrations, i.e. ten of parts pélian by volume (pptv), such as the
halocarbons [Tassi et al., 2012].

Gases were conveyed to the ST using a samplingcbnsisting of the above described
dewared glass tubes (or, alternatively, the funmel)which an ice-cooled condenser
(Graham type condenser) was connected (Fig. 3). gd® flux through the ST was
regulated at 200 mL/min by a low-flux portable pumyt each sampling site (fumarolic
vent and air samples) gases were flushed throwg®thfor 4 hours, corresponding to ~60
L of sample. The condenser prevented the entramoethe ST of water vapor and the
highly soluble gas species (§®CIl, HF and HS), typically present at Vulcano and Mt.
Etna fumaroles [Chiodini et al., 1995; Liotta et, &010]. This method minimizes the
deleterious effects of these compounds on the STt hydrolysis of adsorbed VOCs
[Tassi et al., 2012]. Sampled STs were kept attemperature (<10 °C) to avoid thermal

degradation of VOCs.
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3.2. Analysis of the inorganic compounds and3dy hydrocarbons

The inorganic compounds stored in the sampling fresad-space, i.e..NO,, Ar, H,, He
and carbon monoxide (CO), were analyzed by a ShimalbA gas-chromatograph
equipped with Thermal Conductivity Detector (TCDging a 10 m long stainless steel
packed molecular sieve column and helium or argoa latter being used for He and Ne
analysis) as carrier gas.;-C4 hydrocarbons were analyzed by a Shimadzu 14a gas-
chromatograph equipped with Flame lonization Dete(fID), using a 10 m long stainless
steel column¢@= 2 mm) packed with Chromosorb PAW 80/100 meshezbaiith 23% SP
1700, and helium as carrier gas [Vaselli et alQ820The caustic solution was separated
from solid CdS by centrifugation, oxidized with®p, and used for the analysis of: 1) £O
as CQ* by automatic titration with 0.1 N HCI; 2) HF, H&@hd SQ as F, CI and S@?,
respectively, by ion chromatography (Metronm 7€&9lid CdS was dissolved with,85,

to analyze HS as S@ in a separate ion chromatography run. Water vagar estimated

by the difference (in weight) between the collecgad (W = Ws - Wy, Where Wsis the
weight of the flask after sampling and,36 the weight of the flask before sampling) and
the sum of the analyzed species [Montegrossi g2@01; Vaselli et al., 2006]. Quantitative
analyses of the inorganic compounds apeCg¢hydrocarbons stored in the flask headspace
were carried out using an external standard caidorgorocedure based on analysis of
standard gas mixtures provided and certified bye®wapAnalytical. The analytical error

was <5%.

10
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3.3. Analysis of VOCs

Conditioning of the ST was carried out at 250 °€ 20 min under a stream of purified
helium using a DANI Master Thermal Desorber (TD)O®s trapped in the ST were
desorbed at 250 °C for 20 min using the TD, whicswequipped with a focusing quartz
trap having a three-phase absorbent assembly sitoitthat of the ST. The focusing trap
absorbed the VOCs released from the ST at -5 °Citzard they were thermally desorbed
them at 220 °C for 2 min. VOCs released from treu$ing trap were transferred through a
transfer line maintained at 220 °C to the injectport, operating in splittess mode, of a
Thermo Trace GC Ultra gas chromatograph coupled avithermo DSQ Quadrupole Mass
Spectrometer (GC-MS). Chromatographic separatios achieved using a 30 m x 0.25
mm i.d. 0.25um film thickness TR-5 fused silica capillary colurfifhermo). The carrier
gas was helium set to a flow-rate of 0.8 mL/mircanstant pressure mode. The column
oven temperature program was as follows: 25 °Cd(R0l min), ramp at 4.5 °C/min to 140
°C (hold 3 min), ramp at 20°C/min up to 230 °C ¢th@ min). The quadrupole mass
spectrometer operated in positive electron impamtlen(El) with an ionization energy of
70 eV and a source temperature of 250 °C. The wete@s set in full scan mode, at a scan
rate of 1 scan per second, in the mass range 2%40Q01. (atomic mass unit). The
temperature of the GC-to-MS transfer line was 5268 °C.

Each VOC detected by the quadrupole detector wastifted according to both the
retention time of the chromatographic peak and mh&ss spectra of the molecule
fragments. Library mass spectra [NIST, 1995] wesedufor comparison.

Quantitative analyses were carried out using aereat standard calibration procedure

based on calibration curves constructed measuring instrumental signal of

11
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Accustandard® standard mixtures charged into thmestype of ST used during the
fumarole sampling. To determine the molar concéotia of the VOCs, 6 different
standard mixtures were used: 1) alkanes(galkanes, at concentrations ranging from 5
to 50 ppb), 2) alkenes {Cy alkenes, at concentrations ranging from 5 to 5B),pB)
aromatic compounds (15 species at concentratiomging from 50 to 500 ppb), 4) S-
bearing compounds (6 species at 20 ppb), 5) Odigpacompounds (15 species at
concentrations ranging from 5 to 50 ppb), and 8ddenated compounds (15 species at
concentrations ranging from 0.05 to 5 ppb). Thevecy values of the ST were determined
on the basis of separate direct injection of trendard mixtures carried out using a
volumetric gas syringe. The values of the RelaBvandard Deviation (RSD), calculated
from five replicate analyses of the standard mesuwere <5%. The limit of quantification
(LOQ) was determined by linear extrapolation frdme towest standard in the calibration
curve using the area of a peak having a signakn@igso of 5 [Mangani et al., 2003; Tassi
et al., 2012]. Possible loss of VOCs by dissolutionthe condensate was tested by
analyzing the separated liquid phase of the Vulcsaroples by GC-MS coupled with a
Tekmar Stratum Purge & Trap (PT) instrument. VO@sendisplaced from the condensate
(5 mL), by bubbling helium for 11 min at a flow-eavf 40 mL/min at ambient temperature,
and transferred to a focusing trap having the stree-phase absorbent assembly of the
TD. The released VOCs were absorbed by the PT ifogtisap at -5 °C and then thermally

desorbed at 220 °C for 2 min and transferred t@@@eMS injection port.

12
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4. Analytical results

4.1. Main gas compounds

Outlet temperatures (in °C), concentrations of itlerganic gases (COHCI, HF, SQ,
H.S, N, Ar, O,, Hy, He and CO) and CHH(expressed in mmol/mol) in the dry gas fraction,
steam concentrations (expressed in % by vol.) ardeptages of air fraction (Aof Mt.
Etna and Vulcano gas discharges are reported ile Tab

The outlet temperatures of the Etnean fumarolegerdrom 75 to 337 °C, whilst those of
the Vulcano fumaroles (FNB and FZ) are from 358990°C, respectively. The gases of the
Levante beach at Vulcano Island, namely FM and d®, bubbling in meteoric and
seawater at <20 and 80 °C, respectively. The gagasition of the Etnean fumaroles is
dominated by water vapor (>76% by vol.), whereasdhy gas phase mainly consists in
comparable amounts of GQup to 697 mmol/mol), and Nup to 525 mmol/mol), with the
only exception of that of the VOF7 sample, beingndmted by CQ (955 mmol/mol) and
showing relatively low B concentrations (20 mmol/mol). The Etneagrih fumaroles
are characterized by: 1) relatively high Qup to 62.9 mmol/mol) and Ar (up to 5.8
mmol/mol) concentrations, indicating a strong awntamination; 2) kKl concentrations
ranging from 0.81 to 4.17 mmol/mol; 3) significasdntents of S@ HCI and HF (up to
6.51, 2.35 and 0.41 mmol/mol, respectively); 4atigely low HS (<0.62 mmol/mol), CO
(<0.0087 mmol/mol) and CH(<0.0081 mmol/mol) concentrations. The VOF7 funh@ro
has the highest S315.3 mmol/mol) and & (8.45 mmol/mol) concentrations among the
Etnean gases and relatively low HCI, HR, ahd CO concentrations (0.71, 0.15, 0.011 and
0.0002 mmol/mol, respectively). The two distal Etnéumaroles (TF and BT; Fig. 1) have

low H; (<0.21 mmol/mol), high CiH(up to 12 mmol/mol), whereas acidic compounds

13
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(SO, HCI, HF and HS) and CO are below the instrumental detectiort lihat is 0.01 (for
the acidic gas species) and 0.0001 (for carbon midapmmol/mol.

The fumaroles of La Fossa crater in Vulcano Islahdw dominant water vapor (up to
96.3% by vol.), followed by CO(up to 977 mmol/mol), acidic gases ($6GICI, H,S and
HF concentrations are up to 28.6, 21.2, 5.22 af tamol/mol, respectively), N(up to
16.6 mmol/mol) and KH(up to 2.24 mmol/mol). Atmospheric gases,(@r and Ne) CH
and CO are <0.1 mmol/mol. The beach gas exhalatiomsainly composed of GQup to
990 mmol/mol), N (up to 12.7 mmol/mol) and CHup to 3.09 mmol/mol), whereas water
vapor is <7.89% by vol., and SCHCI and HF are lower than the instrumental detact
limit, as these highly soluble species likely digsdnto seawater as they reach the surface.
Oxygen and Ar concentrations (up to 0.58 and 0.h7okmol, respectively) are slightly
higher than those of the crater fumaroles, whekgaand CO were lower than 0.037 and
0.0012 mmol/mol, respectively. The chemical comjasiof the main constituents of the
gas discharges from both Mt. Etna and Vulcano tsldetermined for the present work are
consistent with those reported for these systemeacent papers [Paonita et al., 2002;

Liotta et al., 2010].

4.2.VOCs

Up to 64 different VOCs, pertaining to the alkad@ €ompounds), alkene (11 compounds),
aromatic (11 compounds), sulfonated (4 compoundsygenated (12 compounds), and
halogenated (14 compounds) groups, were identdiedl quantified. VOC concentrations,
expressed in ppbv (part per billion by volume), eeported in Table 2. The sum of VOC

concentrations ranges from 193 to 10,625 ppbv,thadighest concentration recorded for a

14
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single compound (ethane) is 7,500 ppbv (BT sampitethe Vulcano condensates VOCs
were below detection limits (~0.01 ppbv for all thempounds determined by GC-MS),
indicating that the separation of the condensedsehduring sampling did not cause
significant loss of VOCs in the gas phase. Thiteot$ the low solubility of VOCs in water,
which is even less in volcanic condensates chaiaetk by high ionic strength. The pie
diagrams in Fig. 4 show that the most abundant VGiIGke Etnean fumaroles are alkanes,
ranging from 56 to 87% of VOCs, followed by aromaind oxygenated compounds (up to
30 and 15%, respectively). Alkene and sulfonateshpmunds are a minor but significant
VOC fraction (up to 5.8 and 6%), whereas halocash@mable 2) are <0.5%. Gases from La
Fossa crater are dominated by sulfonated and omygeércompounds (up to 27 and 57%,
respectively), and show relatively high concentragi of alkenes (14 and 15% in the FZ and
FNB gases, respectively), and low concentratiorallane (3.8 and 13% in the FNB and FZ
gases, respectively) and aromatic (up to 8.9%) camgs (Fig. 5a,b). Halocarbons (Table 2)
are <0.6%. The VOC composition of the Vulcano begels discharges (Fig. 5c,d) is
different with respect to that of the crater fumeso alkanes are by far the most abundant
group (68 and 74% in the FM and IS gases, respg}iVfollowed by aromatic compounds
(up to 30%) and minor concentrations of oxygenaétkkne and sulfonated species (up to
0.7, 0.8 and 1%, respectively). Halocarbons (T&)lare 0.02 and 0.05% in IS and FM,
respectively.

Among the G-Cg alkanes, ethane has the highest concentratioalt ihe samples (ranging
from 5.2 to 7,500 ppbv). Branched compounds ares labundant than their linear
homologues, a common feature in volcanic gaseslylidepending on the relatively high

stability of n-alkanes (linear chain) with respectitalkanes (branched chain) at increasing
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temperatures [Astaf’ev et al., 1973; Darling, 1998kavier alkanes @C;2) were also
detected but not quantified. Linear/branched ratibslkenes are significantly lower than
that of alkanes, mainly depending on the relativegh concentrations of methylpropene and
(3)methyl(2)pentene (up to 9.6 and 15 ppbv, resgeg). Benzene concentrations (ranging
from 3.7 and 1,240 ppbv) are significantly highep (o three orders of magnitude) than
those of its numerous methylated and ethylated/aives, whereas naphthalene (from 0.2 to
11 ppbv) is the only PAH (polycyclic aromatic hydasbon) detected. Sulfonated
compounds are mainly constituted of thiophenegi(S and GHeS are up to 33 and 32
ppbv, respectively), and Gfup to 36 ppbv), whereasldsS;, known as main constituent of
floral fragrances [Fréot et al., 2008], has detaet@oncentrations<(.6 ppbv) only in some
samples from the Etna summit craters. Heterocy@gd,0, GHsO, GHsO and GHgO, up

to 79, 28, 23 and 9.2 ppbv, respectively) largatynthate the composition of oxygenated
compounds in the samples, whereas the sum of thsured esters, alcohols and aldehydes
(8 different compounds) is <10 ppbv. All the 14 dgdnated species identified were in
detectable amounts (>0.01 ppbv) in most of the &trgases, whereas in the VOF7 sample
and in those from Vulcano Island the fully halogedahalocarbons (C¢H, CCLF,, CCIR;
and GClIsF3) and GH4Cl, and GHsCl; were below the detection limit.

The VOC composition of the four air samplesi{QNai, Vair and G;) are similar and show
relatively low concentrations of aromatic (from ®@22.9 ppbv) and oxygenated (from 0.2 to
0.9 ppbv) compounds and terpenes (eagpinene, limonene, camphene; not quantified),
whereas halocarbons are at concentrations consi$tern 0.03 to 0.57 ppbv) with those
commonly measured in the atmosphere [Derewent et 298; Butler et al., 1999; Mangani

et al., 2000; Hall et al., 2002; Mangani et alQ201AEA, 2006].
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5. Discussion

5.1. Source regions of fluid discharged from Moktrta and Vulcano Island

The chemical features of fluid discharges from aalc systems are produced by a variety
of primary sources, such as mantle, crust and miguohegassing, and secondary processes
that include gas-water-rock interactions, phasengbs (mainly vapor-liquid) and mixing
between deep-originated fluids and sea- and/or rgheater. Volcanic fluids basically
show two main components: 1) a deep-originated fmag” end-member, which prevails
in summit crater exhalations of active volcanoes] a) a shallower “hydrothermal” end-
member, lying above the magmatic-dominated zone.

The chemical composition of the fumarolic emissidmen the summit Etnean craters is
related to strong contribution of magmatic gasesiriig CO,, SO, and HCI) rapidly
ascending from the deep degassing system throudhghtpermeability fracture, and
gases produced by high-temperature gas-gas antbgaseactions (B H,S and CO).
These fumaroles (excepting VOF7) are also markesidmnjificant amounts of atmospheric
gases (W O, and Ar) drained from the flanks of the cratersfitacture systems, whereas
the hydrothermal component, which was interpretedh@ source of CH[Liotta et al.,
2010], seems to be relatively low. The peripheralissions (BT and TF; Fig. 1),
characterized by a significant Gldnrichment (Table 1), are produced by boiling of a
hydrothermal aquifer, mainly fed by meteoric waparmeating through the fractured
flanks [Liotta et al., 2010] that dissolves the hiig soluble acidic species from the
magmatic source.

The crater fumaroles of Vulcano Island show donmgamagmatic and high-temperature

gases with minor contribution of hydrothermal flsiiend air (Table 1), although relative
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proportions of the magmatic and hydrothermal endabers may vary in time depending
on the status of volcanic activity [Paonita et aD02]. On the contrary, the exhalations
from Levante beach discharge typical .SOHCI- and HF-free hydrothermal fluids,
enriched in CH and air compounds, the latter being likely relai@dnteraction with air
saturated seawater. Our results are in agreemémttvé most reliable geochemical models
of the volcanic-hydrothermal system of Vulcano [@tini et al.,, 1995; Tedesco et al.,
1995], suggesting that the fumarolic dischargekeatinte beach and La Fossa crater are
fed from distinct fluid regions, i.e. a boiling mmpdhermal reservoir and a

magmatic(dominating)-hydrothermal degassing systespectively.

5.2. Origin of VOCs

5.2.1. Hydrocarbons

Organic compounds in volcanic fluids are generalyerpreted as the result of
hydrothermal contribution to the main magmatictedafluid component. Hydrocarbons
(e.g., alkanes, alkenes, aromatics) in hydrotheremalironments are produced by 1)
metabolic and biosynthetic activity of biologicalrganisms (biogenesis), and 2)
decomposition of pre-existing organic matter odagriat temperatures (>150 °C) too high
for bacteria survival (thermogenesis) [Des Mardigle 1981; Rice and Claypool, 1981;
Oremland et al., 1987; Galimov et al., 1988; Whitiand Suess, 1990Jango 2000].
Notwithstanding the relatively high temperatureslatiles produced by microbial activity
such as VOCs can be released into the atmosphehnelfSand Dickschat, 2007; Schulz et
al., 2010], implying that air contaminated fumasolmay partly be affected by biogenic

hydrocarbons.
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Hydrocarbons can abiogenically be produced in latiooy experimental runs and industrial
processes though mechanisms that may include Fi3ecbpsch-type (FTT) reactions
[Fischer and Tropsch, 1926] at temperatures >2Qtigh pressures and on metal (Fe, Ni
and Co), oxide (magnetite) or carbide catalyst®of8i and Satchel, 1981; Anderson 1984;
Galutza et al., 2002; Foustoukos and Seyfried, 20@€ollom and Seewald, 2006; 2007,
Fu et al., 2007; Taran et al.,, 2007; 2010]. Thécmktapproaches have shown that
thermodynamic conditions of volcanic-hydrothermiaiid reservoirs are consistent with
those required for abiogenic synthesis of organimmounds [Shock, 1990; Symonds and
Reed, 1993; Wahrenberger, 1997; Shock and ScHi8@8; Zolotov and Fegley, 1999;
Zolotov and Shock, 2000; Wahrenberger et al., 2002prmation of abiogenic
hydrocarbons was proposed to occur in a rangetafalanvironments in the Earth’s crust
[Seward, 1974; Abrajano et al., 1988; Szatmari,9198idorov et al., 1990; Sugisaki and
Mimura, 1994; Kenney, 1995; Basiuk and Navarro-Gies, 1996; Bernt et al., 1996;
Giggenbach, 1997; Salvi and William-Jones, 1997%e(G11999; Kelley and Frith-Green,
2001; Sherwood-Lollar et al., 2002; Taran et @02 Taran and Cienfuegos, 2008; Etiope
et al.,, 2011]. However, reliable geochemical patenseable to unequivocally identify
abiogenic hydrocarbons in natural fluids have still been identified.

Light (C»-Cg) hydrocarbons occurring in low-temperature gastdisges from Levante
beach at Vulcano Island are ascribed to thermogprocesses [Mangani et al., 1991,
Capaccioni et al., 1995, 2001]. Schwandner e28I04] found that the relative abundances
of C;-Cq2 n-alkanes in fumarolic fluids from La Fossa cratas la modus at¢followed

by a strong decrease ofs:Cconcentrations resembling a Schulz-Flory typerithistion

[Satterfield and Huff, 1982], which is regardedaamdicator of catalytic Fischer-Tropsch
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synthesis [Salvi and William-Jones, 1997]. On thésis, hydrocarbons in these gases are
suggested to be possibly deriving from an abiogeaigce [Schwandner et al., 2004]. Our
data show that the ,&Cg n-alkane distributions of the two samples from Lasd#crater
(Fig. 6a) are different with respect to the typi&hultz-Flory linear pattern, and are
characterized by relatively high concentrations atkanes with odd carbon number
(pentanes and heptanes) consistent with those wdpéor hydrocarbon production by
pyrolisis of kerogen [Pereira et al., 1982; Huiargs al., 1988; Putschew et al., 1998]. The
n-alkane distribution at Levante beach (Fig. 6la) &Bh. Etna (Fig. 6¢) are similar to those
of the La Fossa gases. This behavior supports dba that in volcanic-hydrothermal
systems thermogenesis can be regarded as a comeneticgprocess for these organic
compounds. Useful insights into the genetic medmrof n-alkanes are provided by the
carbon isotopic signatures of the-C; alkane series [Des Marais et al., 1981, 1988; Ghun
et al., 1988; Sherwood Lollar et al., 2002, 20081tdt et al., 2004; Fu et al., 2007; Taran et
al. 2007, 2010, Proskurowski et al., 2008; McCollenal., 2010]. Unfortunately, neither in
the present study nor, to the best of our knowletgkterature, are these data available for
Mt. Etna and Vulcano fumaroles, likely becauseabendances of such compounds are too
low to allow isotopic analyses using methods adbpby most of the analytical
laboratories.

Production of alkenes by alkane dehydrogenatidavisred under oxidizing conditions and
relatively high temperatures [Giggenbach and Cesr&oto, 1992; Seewald, 1994,
Capaccioni et al., 1995, 2004, 2011; Taran and &iggch, 2003, 2004; Tassi et al.,
2009a,b], i.e. thermodynamic conditions characiegizhe volcanic-hydrothermal systems

of both Mt. Etna and Vulcano Island. This would kexp the relatively high concentrations
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of alkenes measured in our gas samples, significhigher than those commonly found in
hydrothermal fluids [Tassi, 2004]. High contentsasbmatic compounds, such as those
measured in all the analyzed gas samples (Figsadd5), are consistent with those
measured in gas discharges from various hydrotHeam volcanic systems worldwide
[Simoneit et al., 1988; Giggenbach and Corrale®,Sb@92;Darling, 1998; Capaccioni et
al., 2004; Tassi, 2004, 2007, 2009a, 2010b]. Faomabf aromatic compounds may
proceed through catalytic “reforming” processesuch as dehydrogenation of
cycloalkanes, dehydrocyclization of alkanes andizgtion of acetylene [Tamers, 1976;
Rucker et al., 1986; Mango, 1994; Capaccioni et 1#95; Meriaudeau and Naccache,
1997]. These reactions are favored in presenceatdlytic agents, such as free acids,
allumosilicates and sulfur gas species, largelylabi@ in a volcanic environment, where
monoaromatics may also form from thermal decomjmositof alkylated aromatic
compounds with long side chains [Savage and Kl&B87; Smith and Savage, 1991;
Kissin, 1998]. Efficiency of oxidative aromatizatiamf methane to produce benzene was
proven only experimentally [Claridge et al., 199Phe ubiquitous occurrence of aromatic
compounds, especially benzene, in volcanic-hydrataéfluids is likely related to the high
stability of the aromatic ring @ls) under a large range of temperature and redox
conditions [Katritzky et al., 1990], although thkuadance of aromatics in natural fluids
also depends on i) the type of source matter [lassuker et al., 1979], and ii) migration-
related compositional fractionation [Thompson, 19&4atalytic degradation of methylated
mono-aromatic compounds [McCollom et al., 2001},0iming benzaldehyde and phenol
that were measured at significant concentratiomaost gas emissions of the present study

(Table 2), is likely the cause for the high ratiostween benzene and the sum of its
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methylated derivatives (up to 55). Zolotov and $h§2000] found that in a cooling
volcanic gas, naphthalene, which is consistentgsg@nt of all the samples from both Mt.
Etna and Vulcano, and other PAHs have the thermadio potential to be formed via
Fischer-Tropsch reaction. However, this processffisient at temperatures <250 °C, i.e.
lower than the outlet temperature of some of theptad fumaroles. This suggests that
formation of naphthalene in these fluids mostlyeatets on thermal degradation of organic

matter.

5.2.2. Oxygenated and sulfonated compounds

In volcanic gases, production of £8ay occur through sulfonation processes involving
compounds typical of magmatic degassing4{8ad CQ), as well as gases from secondary
gas-water-rock interactions £§8 and CH) [Petherbridge et al., 2002]. Among the various
catalytic processes able to synthesize thiopheBestliward et al., 1998; Tomov et al.,
2000; Li et al., 2008], ring closure of dienes, Wwmoas Paal-Knorr synthesis, through
addition of HS in presence of Hand metals [Campaigne and Foye, 1952], is to be
considered the most reliable genetic mechanisnttiveavolcanoes that are rich in these
catalysts [Tassi et al., 2010a]. Similarly, ringstire of oxygenated alkenes may represent
the main genetic mechanism for furans, which are thost abundant fraction of
oxygenated species (Table 2). Natural abiotic féionaof furans in soil can also be related
to oxidation of organic matter induced by iron(ldihd hydrogen peroxide in the presence
of chloride [Huber et al., 2010]. Alkene oxidatiomy produce alcohols, aldehydes and
esters [Muenow, 1973], a process that may be favatedepth by oxidizing conditions

determined by the presence of magmatic compourttgugh it can also occur when
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ascending fumarolic fluids approach the surfaceerehfree @ is available due to air
contamination. Acetic acid may also form by methigla of formate produced by CO
dissociation. Oxygenated compounds were detectdtierair samples at concentrations
similar to those of the fumaroles, thus their pnesein fumarolic fluids, especially in those
from Mt. Etna, can also be directly due to air emnination.

Previous studies [Tassi et al., 2010] have fourad th volcanic-hydrothermal fluids the
concentrations of thiophenes show an inverse @iioel with species released from
magmatic degassing, whereas they are enricheduidsflfrom hydrothermal systems,
where high HS concentrations and reducing conditions favorptiméme formation. In
contrast, furans have a strong correlation with mmetge fluids. In the present study, the gas
samples are characterized by comparable abundasfcesulfonated and oxygenated
heteroaromatics (Table 2), suggesting that both nmaéig and hydrothermal sources

significantly contribute to the gas discharges of Btna and Vulcano Island.

5.2.3. Halogenated compounds

Halogenated compounds, intensively produced dws@wgral industrial processes, occur in
atmospheric air at significant concentrations daetheir extraordinary environmental
stability. Jordan et al. [2000] measured CFCs igegafrom different volcanic systems,
including Mt. Etna and Vulcano Island, at concetitres equal to background air. Fritsche
et al. (2006), on the basis of analysis of fumargses from Momotombo, Cerro Negro
and Mombacho volcanoes (Nicaragua), excluded tbgepice of significant concentrations
of geogenic halocarbons. According to these reshlkcarbons are commonly used as

tracers for the atmospheric component within a fimeasample. Some authors [Stoiber et
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al., 1971; Cadle et al., 1979; Isidorov et al., @;98idorov, 1992] suggested that reaction
between magmatic hydrogen halides (e.g., HCI and &# organic compounds are
capable to produce halocarbons in active volcand2scurrence of volcanogenic
halocarbons may explain the relative enrichmen€BC-11 found by Schwandner et al.
[2004] in gases discharged from La Fossa craténpagh thermodynamic calculations
seem to exclude this hypothesis [Symonds et aB8[L9n the present study, particular
attention was paid to halocarbons to understandhehéhe presence of these compounds
in volcanic environment could be related to a geagsource. As also shown by the VOC
analysis of the air samples from Mt. Etha and Vidcdsland (Table 2), significant
concentrations of halogenated compounds are praséné atmosphere. Considering that
atmospheric components typically contribute to tdoenposition of fumarolic gases at
various degrees, a correct evaluation of the omfinalocarbons in volcanic fluids needs a
reliable quantification of air contamination in tbellected samples. Nitrogen, i.e. the main
air constituent, may partially derive from organich sediments buried within subducting
material [Jenden et al., 1988], especially in votzs located along plate boundaries
[Giggenbach, 1996] such as Vulcano, whereassQapidly consumed during subsurface
gas-water-rock interactions. Neon, which can besidmned entirely atmospheric, was
below the detection limit (0.001 mmol/mol) in seafersamples. According to these
considerations, Ar is to be regarded as the bexdidate for evaluating the atmospheric
fraction in the fumarolic samples, although radimgecontributions cannot be excluded, at
least in the Vulcano gases whef@r/*°Ar ratios higher than that of air (295) were
occasionally measured [Tedesco and Nagao, 1996umisig that Ar concentration in air

is 9.3 mmol/mol, the air fraction ¢Ain fumarolic samples ranges from 0.7 to 1.8% in
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Vulcano gases, whereas that in fumaroles from NttaEexcepting the VOF7 samples (A
=1.9%), is between 25.7 and 62.8%. Concentratiansfumaroles of halogenated
compounds deriving from air contribution are cadted considering the;Aralues and the
measured concentrations of halogenated compounds ifmean values of the two air
samples collected from each investigated volcaibe Etnean gases have measured
concentrations njea3 of most hydrogenated halocarbons,HeCI, C,HCl;, CHC,
C,H.Cl,, CHCI,, CHiCI, and GHsCI) and CCJ significantly higher than those expected
considering air as their unique souregqd (Fig. 7). Themeasvalues of these halocarbons
in the Vulcano fumaroles are up to three ordemmafnitude higher than tlexpones (Fig.

8). On the contrary, the differences betwesmsandexp concentrations for £13;Cl; and
C,H4Cl, are in the range of the analytical error for Emngases (Fig. 7), while they are
below the detection limit for those of Vulcano (F#). It is worth noting that thexp
values for Vulcano samples are likely overestimastace A calculation may be affected
by an error deriving by presence of radiogenic @onsequently, the halocarbon excess
characterizing Vulcano fluids may be even highemtlthat estimated with our method.
These results clearly show that, even in aeratethfoles, such as those from Mt. Etna,
most hydrogenated halocarbons and Li@ve an extra-atmospheric source. This is in
disagreement with previous authors [Jordan, 20@M32 Frische et al., 2006], who
reported concentrations of several HCFCs and CRCamaroles and lava gas samples
from various volcanoes, including Vulcano and Mh& equal to or below background air.
However, interactions between concentrated alkalotetions and halocarbons are known
to have significant degradation effects on theggamic species [Needs and Selvendran,

1993; Yu et al., 1996]. Therefore, halocarbon quinte analysis in gases stored in the
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headspace of Giggenbach flasks, i.e. the sampliathod used by both Jordan [2000,
2003] and Frische et al. [2006], may be affectedosg of analytes. Comparison between
measandexp concentrations of CFCs for Etnean gases (Fige8jns to indicate that the
geogenic fraction of these compounds is not sigaifi. This indication cannot be
confirmed by the CFC composition in Vulcano fumaslsince the concentrations of these
gas species, as well as thexpvalues, were below the detection limit (Fig. 18pwever,
analyses of CFCs and HCFCs in air extracted frortaig firn [Sturrock et al., 2002]
showed that CGF, CCLF,, CCIR and GCIsF; were not detectable in samples older than
the 1930s, when the industrial production of thgeses started, suggesting that their origin
is entirely synthetic. In contrast, the same awgheported the occurrence of significant
concentrations of Cgland in samples of pre-industrial age. This supgporr results
clearly indicating that hydrogenated halocarbond &Cl, can derive from a natural

source.

6. Conclusions

VOCs pertaining to alkane, alkene and aromatic ggpas well as their O-, S- and CI(F)-
substituted compounds, were identified in a largege of concentrations in volcanic-
hydrothermal fluids from Mt. Etna and Vulcano IgaPyrolysis of organic matter buried
in sediments interacting with the ascending magmiidiids, is likely the main genetic
mechanism for alkanes that, at their turn, are eded to alkene and aromatic compounds
through catalytic reactions, such as dehydrogematend dehydroaromatization,
respectively. Occurrence of abiogenic light hydrboas cannot be definitely assessed (or

excluded) without the support of carbon and hydnog®topic data whose analyses are
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prevented by their low concentrations. The chenptsisical conditions characterizing
both Mt. Etna and Vulcano volcanic-hydrothermal teyss, i.e. relatively high
temperatures, highly acidic and oxidizing conditicend abundance of inorganic sulfur
gases, favor the formation of S- and O-bearingrbatematic compounds. In this highly
reactive environment, oxidation of hydrocarbongptoduce minor amounts of alcohols,
esters and aldehydes may occur. Alternatively, temdiof these compounds to the
fumarolic fluids could derive from air contaminatio

Our data, compared with those expected for backgtair, have shown that in active
volcanic systems, where large amounts of hydrogelidds and metal catalysts are
available, geogenic halocarbons can be producedsigmificant amounts through
halogenation of both methane and alkenes. Thigiosaseems to be not efficient when
alkanes are involved, likely because these compouamne chemically inert, especially in
comparison to alkenes, and are present in vologases at concentrations relatively low
compared to methane. CFC concentrations are censistth background air in fumaroles
from Mt. Etna, thus the occurrence of geogenic CBE&€sms be excluded, in agreement
with the lack of detectable concentrations of thesepounds in air samples of pre-
industrial age. This suggests that processes ofplaten halogenation of organic
compounds in a natural environment, even when ¢tiondi are favorable such as those of
volcanic-hydrothermal systems, is not efficieng, significantly lower than that required
for natural production of HCFCs.

Halocarbons are chemical species of great intéoegtobal warming and climate change
issues. Contradictory results are reported by miffe studies and suggests that

compositional data of halocarbons in volcanic fiitb be used for an estimation of the
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input of these compounds to the atmosphere fromralasources, are to be taken with
caution. Further investigations on these issuesjea@i to improve the halocarbon
quantification in volcanic gases even at very lownaentrations, are strongly
recommended, especially when considering the imapo# their geochemical cycle may

have at global scale.
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Figure captions

Fig. 1. Geographic map of Mount Etna summit crateits location of the sampled gas
discharges.

Fig. 2. Geographic map of Vulcano Island with lematof the sampled gas discharges.
Fig. 3. Equipment for the gas sampling from fumesahnd bubbling pools for the analysis
of the main gases and VOCs.

Fig. 4. Pie diagrams showing the relative percesgay VOCs pertaining to alkane, alkene,
aromatic, sulfonated and oxygenated groups in gafarges from Mount Etna volcano.
Fig. 5a,d. Pie diagrams showing the relative peegegs of VOCs pertaining to alkane,
alkene, aromatic, sulfonated and oxygenated grougsFZ, b) FNB, c) FM, and d) IS gas
discharges from Vulcano Island.

Fig. 6a,c. G-Cg n-alkane distribution in gas discharges from a) losda crater, and b)
Levante beach (Vulcano Island), and ¢) Mount Etplaano.

Fig. 7. Comparison between measune@d3 and expectedekp concentrations (in ppbv)
of hydrogenated halocarbons,tGCl, C;HCI3, CHCkL, CH.Cl,, CH,Cl,, CHsCl, CsHsCl,
C2H4Cly, and GH3Cls) and CCl, in fumaroles from Mount Etna volcanBxp values, i.e.
the concentrations of hydrogenated halocarbonsvidgrifrom air contamination of
fumaroles, are calculated on the basis of theadatibn (A) present in the gas samples.
Fig. 8. Comparison between measune4$ and expectedekp concentrations (in ppbv)
of hydrogenated halocarbons,(GCl, C,HCl3, CHCl, CGH.Cl,, CH,Cl,, CH;CI, CsHsCl,
C,H4Cl,, and GH3Cls) and CClJ, in fumaroles from Vulcano Island.

Fig. 9. Comparison between measuned$ and expectedekp concentrations (in ppbv)

of CFCs (CGJF, CCIR;, CCkF;, and CCJF,) in fumaroles from Mount Etna.
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1191 Fig. 10. Comparison between measuraeed3 and expectedekp concentrations (in ppbv)

1192 of CFCs (CCJF, CCIR, CChFs, and CCJF,) in fumaroles from Vulcano Island.
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