Title: Triggering mechanisms of static stress on Mount Etna volcano. An application of the boundary element method.

Article Type: Research Paper

Keywords: Numerical modeling, Coulomb stress changes, volcano dynamics, Mount Etna volcano, magmatic activity.

Abstract: In the last thirty years, numerous eruptions and associated deformation episodes have occurred at Mt. Etna volcano. Datasets recorded by continuous monitoring of these episodes provide a unique opportunity to study the relationships between volcanism, flank instability and faulting activity. We have investigated the stress triggering mechanism between magmatic reservoir inflation, intrusive episodes and flank dynamics. Using three-dimensional numerical Boundary Elements Models we simulated volcano-tectonic events and calculated Coulomb stress changes. Using this modeling approach, we analyzed four realistic scenarios that are representative of recent kinematics occurring at Mt. Etna. The main results obtained highlight how (1) the inflation of a deep spherical magma source transfers elastic stress to a sliding plane and faults (2) the opening of the NE Rift and S Rift (to a less efficient extent) favor movements of the unstable sector and may encourage seismicity on the eastern flank faults, and (3) flank instability may trigger the uprising of magma. Defining the effects of the elastic stress transfer and relationships among the main forces acting on volcano, may help to forecast possible eruption scenarios during future episodes of unrest at Mount Etna and provide an important tool for decision makers during volcanic emergencies involving the highly populated areas of the volcano.

E. Privitera

E. Privitera*, A. Bonanno2, S. Gresta1,3, G. Nunnari2, G. Puglisi1

1) Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Piazza Roma 2, I-95123 Catania, Italy.
2) Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica, Elettronica ed Informatica., Viale Andrea Doria 6, I-95125, Catania, Italy.
3) Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Corso Italia 57, I-95129 Catania, Italy,

Running Title: Coulomb stress changes at Mount Etna

* Corresponding author:

Eugenio Privitera

Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo
Piazza Roma 2, I-95123 Catania (Italy)
E-mail: eugenio.privitera@ct.ingv.it
Tel.: ++39 095 716 5844 – Fax ++39 095 716 5826
Abstract

In the last thirty years, numerous eruptions and associated deformation episodes have occurred at Mt. Etna volcano. Datasets recorded by continuous monitoring of these episodes provide a unique opportunity to study the relationships between volcanism, flank instability and faulting activity. We have investigated the stress triggering mechanism between magmatic reservoir inflation, intrusive episodes and flank dynamics. Using three-dimensional numerical Boundary Elements Models we simulated volcano-tectonic events and calculated Coulomb stress changes. Using this modeling approach, we analyzed four realistic scenarios that are representative of recent kinematics occurring at Mt. Etna. The main results obtained highlight how (1) the inflation of a deep spherical magma source transfers elastic stress to a sliding plane and faults (2) the opening of the NE Rift and S Rift (to a less efficient extent) favor movements of the instable sector and may encourage seismicity on the eastern flank faults, and (3) flank instability may trigger the uprising of magma. Defining the effects of the elastic stress transfer and relationships among the main forces acting on volcano, may help to forecast possible eruption scenarios during future episodes of unrest at Mount Etna and provide an important tool for decision makers during volcanic emergencies involving the highly populated areas of the volcano.

Keywords: Numerical modeling, Coulomb stress changes, volcano dynamics, Mount Etna volcano, magmatic activity.
1. Introduction

Active volcanoes in densely populated areas represent a primary hazard that requires a operative and well-timed interaction between research institutions and civil defence authorities during unrest episodes. Consequently, involved researcher are encouraged to tune up affordable methods that can provide realistic scenarios of the eruptive evolution in near real-time.

Mount Etna dynamics is the result of a complex interplay between magma ascent in the plumbing system, dike emplacement, tectonic uplift, faulting and flank instability. Many studies have highlighted that at Mount Etna increases in static stress induced by dike intrusions bring faults closer to failure (Gresta et al., 2005). More recently, the pressurization of a magmatic reservoir was considered to trigger 1997-1998 Mount Etna seismic swarms as a consequence of stress redistribution (Bonanno et al, 2011).

The increase in collected seismic and deformation measurements and the rapid growth of computational power have enabled improving investigations into the relationship between faulting, flank dynamics and magmatic activity using numerical modeling. Walter et al. (2005) modeled the 2002-2003 Mt. Etna eruption by means of Boundary Element Method, evaluating the influence of four different sources on the kinematics of the volcano’s eastern flank. They found a feedback relationship between flank movements and intrusive processes The numerical models suggest that magmatic activity (inflation of a reservoir and emplacement of dikes) encourages motion of the eastern flank, which, in turn, promotes magma to rise up to shallower levels within the volcano. Currenti et al. (2008) performed a Finite Element Modeling approach to evaluate ground deformation and the resulting stress redistributions in response to magmatic processes occurring during the 2002–2003 Etna eruption. They found that the changes in the state of stress generated by the southern dike produce an extensional stress field that favors magma propagation along the north-east Rift. The static stress changes computed onto the Timpe Fault System and the Pernicana Fault indicate that the magma intrusions on the southern and northeastern flanks prompted these
seismogenic structures to slip. In this paper, we will use numerical simulations to hypothesize four realistic scenarios at Mt Etna in which one source at a time is active. Coulomb stress changes will be computed on three dimensional fault surfaces in order to investigate the interaction between intrusion/eruptive episodes, tectonic activity and flank instability. The method used requires a processing time of some tens of minutes and is thus suitable for a near real-time application in order to forecast the evolution of future unrest episodes.

2. Etna volcano setting

Mount Etna is a Quaternary basaltic stratovolcano located on the east coast of Sicily. It stands between two first-order tectonic elements: the Apenninic-Maghrebian Chain and the Hyblean Foreland (inset of Figure 1). The northern and western sectors of the volcano lie over metamorphic and sedimentary rocks belonging to the frontal nappes system of the Apenninic-Maghrebian Chain, whereas the southern and eastern sectors overlie marine clays of Quaternary age, deposited on the flexured margin of the northward-dipping downgoing Hyblean Foreland (Lentini, 1982) (inset of Figure 1).

Volcanic Activity

Recent volcanic activity of Mount Etna is characterized by eruptions at the four summit craters, and by fissure eruptions and dike intrusions at the rift zones oriented NE, south and west. During the last 400 years, about half of the eruptions occurred along the rift zones through fissures opened on the volcano flanks (Behncke and Neri, 2003). These fissures are usually related to the lateral intrusion of dikes radiating from a shallow magma conduit system.

Important results obtained during recent decades, mainly due to the rapid improvement in the seismic and deformation monitoring networks, have identified the main tectonic structures and the
paths along which the magma rises beneath Mount Etna. Seismic tomographic images define the
basement of Mount Etna as characterized by a main upper and middle crustal intrusion complex,
with high $V_p$ values (High Velocity Body; HVB), whose top is located at about 4 km below sea
level (b.s.l), beneath the southeastern flank of Mount Etna (e.g., Aloisi et al., 2002; Chiarabba et al.,
2004; Patanè et al., 2006). In recent years, magma intrusions have ascended along the western
boundary of the HVB, as documented by ground deformation and seismic studies (e.g., Bonforte et
al., 2008; Puglisi et al., 2008 and references therein). It is noteworthy that the lack of evidence for
large magmatic storage volumes strongly supports the idea that, during its ascent along the western
boundary of the HVB, the magma is stored as a plexus of dikes or sills, as suggested by Armienti et
al. (1989) to justify the typical polybaric evolution of the magmas within the plumbing system of
Mount Etna (Corsaro and Pompilio, 2004).

**Structural framework**

The shallow geodynamic behavior of Mount Etna seems to be controlled by the flank instability
processes causing the seaward sliding of the volcano eastern side as a result of a complex
interaction between regional tectonic stresses, gravity forces acting on the volcanic edifice and the
dike-induced rifting (Neri et al., 1991; Borgia et al., 1992; Lo Giudice and Rasà, 1992;
McGuire, 1996; Rasà et al., 1996). Although the published models propose different explanations of
the origin and depth of the flank movement, they all agree in identifying the Pernicana Fault system,
PF (Figure 1) as the northern boundary of the unstable sector. This is a transtensive fault with left
lateral movement. It is characterized by a high slip rate from 10 to 28 mm/year with shallow (<3.5
km) and moderate seismic activity (2<$M<$4.5) (Azzaro, 1997; Azzaro et al., 2001). The PF activity
is kinematically connected to the episodic opening and eruptions of the nearby NE Rift (Figure 1)
(Neri et al., 1991; Gardunò et al., 1997; Tibaldi and Groppelli, 2002; Acocella and Neri, 2003;
Acocella et al., 2003). The southern part of the western boundary of the unstable sector is
represented by the South Rift (Rasà et al., 1996) joining, southeastward, with the Tremestieri-
Trecastagni fault system TTF (Figure 1). This fault system is made up of a number of NNW–SSE striking faults showing evident right-lateral displacement and is also characterized by very shallow seismicity, with typical focal depths of 1–2 km. Other tectonic lineaments dissect the southern and south-eastern sectors of the volcano, such as the Timpe Fault system (STF1 and STF2), San Leonardello Fault (SLF), Moscarello Fault (MF) and Santa Venerina Fault (SVF) (Figure 1).

Most of these faults have high slip rates from 1.0 to 2.7 mm/year (Azzaro, 2004; Puglisi et al., 2008), partly due to shallow seismicity (Lo Giudice and Rasa, 1992; Montalto et al., 1996). Instrumental data, according to historical and macroseismic information (Azzaro, 1999), indicate that more than 80% of earthquakes are shallower than 5 km (Gresta et al., 1990), which, despite their moderate magnitude, have often produced coseismic surface faulting. Fault plane solutions of these events frequently indicate a right lateral strike, combined with a significant normal component. More recent proposals emphasize the complexity of the unstable sector, showing how these faults represent the main structures that separate portions with slightly different velocities of downslope movement (Bonforte et al., 2011).

3. CFS Modeling

In this paper, we investigate the relationships between volcanism, flank instability and faulting in terms of elastic stress change. We investigate possible triggering conditions in which only one deformation source at a time is active. Our modeling approach examines how (1) the inflation of a spherical deep source interacts with the sliding plane and faults, (2) the opening of an eruptive fissure (at North-East or South Rift zone) affects the sliding movement of eastern sector or seismic activity on fault planes, (3) the flank instability governs the kinematics of faults and triggers (or inhibits) the ascent of magma (Figure 3).

3.1. Modeling Method
Taking into account the topographic effects, we compute boundary element solutions of deformation sources embedded in an elastic half-space, using the program Poly3D 2.1.8 (Thomas, 1993; Maerten et al., 2005). Based upon the boundary element method (Crouch and Starfield, 1983), Poly3D includes the fundamental solution to an angular dislocation in a homogeneous, linear elastic half-space (Comninou and Dundurs, 1975). A number of angular dislocations are juxtaposed to create polygonal boundary elements that collectively define discretized objects of arbitrary shape in three dimensions. Boundary conditions in Poly3D can be applied remotely (as constant stresses or strains), at the centers of each element of the discretized fault surface (as tractions or displacement), or as combinations. The program solves a series of linear algebraic equations that describe the influence of each element on every other element under a prescribed set of boundary conditions. Once the displacement distribution along a fault is determined, the static stress, strain and displacement fields around the fault are calculated using influence coefficient equations that relate the displacements at the fault to the resultant elastic field at any point in the surrounding linear elastic medium. This solution is superimposed upon the remote stress field boundary condition to produce the total elastic field. Note that in our modeling processes we do not take into account the regional stress field. Indeed, geological and geophysical evidences highlight the heterogeneity of the Mount Etna stress field in time and space (e.g., Barberi et al., 2000 and reference therein). According to Gresta et al. (2005), from a kinematic point of view, the coexistence of structural elements such as PF and TFS are incompatible with a homogeneous stress field. Consequently, in this paper we use only “Specified fault calculation” for ΔCFS computation and we relinquish the evaluation of “optimally oriented faults” (strongly influenced by the regional stress field) as suggested by several authors in such cases (e.g., Gresta et al. 2005, Bonanno et al., 2011 and references therein).

In Poly3D we build polygonal elements for modeling complex surfaces with curving boundaries. Surface fault changes in strike are meshed without gaps. The spherical void is built by assembling triangular, hexagonal or pentagonal elements in the same manner as a football.
The Boundary Element Method was chosen because it is suitable for near real-time applications since it allows modifying an evolving scenario simply by adding new magmatic sources and/or receiving structures. The use of Poly3D enables avoiding meshing the medium every time a structural modification is carried out, in such a way the computational time is limited to tens of minutes.

3.2. Setup of deformation source parameters

Following on from recent studies (Patanè et al., 2003a; Chiarabba et al., 2004; Bonaccorso et al., 2006; Bonforte et al., 2008; Puglisi et al., 2008; ), we considered a spherical cavity constructed of 815 triangular elements, simulating a 1 km in radius reservoir at 3 km depth (Figure 2). An increase in magma pressure perturbs the stress field in the surrounding crust. Using positive traction boundary conditions, normal to the element, we defined a volume increase of $7.9 \times 10^6$ m$^3$, a realistic value for inflating magma bodies (Bonaccorso et al., 2006; Palano et al., 2007; Puglisi et al., 2008).

The center of the MR was located beneath the Summit Craters area (for details see Table 1). In addition, in order to evaluate the influence of depth of an inflating reservoir (hereafter MR) on other considered structures and in particular on SP, we performed two further simulations moving the center of the sphere by $\pm$ 2.4 km. These steps of depth were chosen since they roughly correspond to the projections respectively of the top and the bottom of SP (see below) along the vertical line intersecting the Summit Craters.

Dike intrusions were modeled by rectangular planes with a curving top boundary matching the topography (Figure 2). A uniform element-normal displacement discontinuity of 2.5 m is imposed on dikes. The geometry of the North-East and South dikes used in this paper is based on values published by Puglisi et al. (2008). In any case, openings larger than 3 m do not modify the results significantly. The parameters of the modeled dikes are reported in Table 1.

In agreement with inversion models inferred from ground deformation measurements (Puglisi and Bonforte, 2004; Bonaccorso et al., 2006; Bonforte et al., 2008), we modeled a sub-horizontal sliding
plane (hereafter SP) as a rectangular surface 20 km long and 25 km wide, with a main normal (7.7 cm) and minor dextral component (4.4 cm) (Figure 2). Although the slip amount depends on the period investigated, inversion models published (Puglisi and Bonforte, 2004; Palano et al., 2007) found an overall sliding in the range of 4 – 9 cm/year in the period 1993 -2000.

3.3. Setup of topography and fault parameters

We used the Global Digital Elevation Model (INGV-G-DEM) that merges inland DEM (Tarquini et al., 2007; Neri et al., 2008) and bathymetric data sets available for the Mount Etna area (Bosman et al., 2007; Cavallaro et al., 2008). The original data were integrated and interpolated, becoming homogenous with a final resolution of 10 m pixel size. Using INGV-G-DEM resampled with a resolution of 100 m, we built a rectangular surface of 3500 km² (extending for about 70 kilometers in longitude and 50 km in latitude) and discretized with 3184 triangular meshes (Figure 2). Volcano topography is assumed as a traction-free surface in order to study the influence on displacements and stress numerical calculations. According to geological and structural studies integrated with seismic data, we modeled the main tectonic lineaments of the eastern sector of the volcano. We built the faulting planes as rectangular surfaces with a curving top boundary matching the topography, with each plane discretized by triangular meshes with a mean areal dimension of about 0.027 km². In particular, Provenzana Fault (PR) shows a change of strike from N35°E to N55°E, thus a curving top boundary is modeled. The Pernicana Fault (PF) is made up of four segments (PF1, PF2, PF3 and PF4) striking N88°E, N102°E, N114°E, N120°E, respectively (Figure 2a). The southern border of the unstable sector is represented by the Tremestieri-Trecastagni Fault system (TTF) modeled with a sub-vertical plane with a sharp change in direction (from N103°E to N150°E). The Timpe Fault System is made up of two segments, STF1 and STF2, with strike direction N165°E and N3°W, respectively. These latter fault systems, together with SLF, MF, SVF, all striking from N173°E to N140°E, reach the depth of the sliding plane (see Figure 2b). The sub-vertical fault planes above the sliding plane (SP) have a width ranging from 1950 to 2800 m (for
details see Table 2). In our models, we assume that receiver faults are discontinuities embedded in an elastic half-space in which they are free to move in any direction.

3.4 Coulomb Stress Changes

We calculated Coulomb stress changes caused by volcanic sources on modeled fault planes, while computing changes in volumetric or normal stress near the magma chamber or eruptive dikes caused by flank movements or earthquakes (e.g. Savage and Clark 1982; Nostro et al. 1998; Toda et al. 2002). It is widely accepted that static stress changes (≥ 0.1 bars) induced by a magmatic source may trigger seismicity within a rock volume close to the critical state of failure (e.g., Reasenberg and Simpson, 1992; Stein, 1999). Spatial and temporal relationships between stress changes and earthquakes are explained through the Coulomb failure stress change, defined as:

$$\Delta \text{CFS} = \Delta \tau + \mu (\Delta \sigma_n + \Delta P)$$  \hspace{1cm} (1)$$

where $\Delta \tau$ is the shear stress change computed in the direction of slip on the fault, $\Delta \sigma_n$ is the normal stress change (positive for extension), $\mu$ is the coefficient of friction and $\Delta P$ is the pore pressure change (e.g., King et al., 1994; Harris, 1998; King and Cocco, 2000). For simplicity, we considered here a constant effective friction model (Beeler et al., 2000; Cocco and Rice 2002) that assumes $\Delta P$ is proportional to the normal stress changes ($$\Delta P = -B \Delta \sigma_n$$, where $B$ is the Skempton parameter):

$$\Delta \text{CFS} = \Delta \tau + \mu' \Delta \sigma_n$$  \hspace{1cm} (2)$$

where $\mu'$ is the effective friction ($\mu' = \mu[1 - B]$). The fault is brought closer to failure when $\Delta \text{CFS}$ is positive. In order to verify if dike intrusions or magmatic reservoir inflations are encouraged, we evaluate the change of the volumetric strain ($$\Delta \varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$) on the magmatic reservoir and horizontal normal stress changes ($$\sigma_m = \Delta \sigma_{xx} + \Delta \sigma_{yy} / 2$$) on the rift zone dikes. Indeed, the unclamping of a rift zone ($$\sigma_m > 0$$) induced by fault dislocations may facilitate the ascent of new magma and dike injection. In the same way, the unclamping may favor the decompression of the magma reservoir, leading to the formation and ascent of bubbles and then increasing the magma
overpressure. We performed all calculations in a homogeneous Poissonian elastic half-space using a Poisson ratio of $\nu = 0.25$ and a Young modulus of $E = 75 \text{ GPa}$, and a $\mu' = 0.4$.

3.5 Assumptions of numerical modeling

Coulomb stress changes are evaluated in a homogenous elastic half-space. Thus mechanical heterogeneities, for instance due to thermal structure, a hydrothermal altered volcanic core or a mechanically rigid basement, are not taken into account by our models. As stated before, the regional stress field is not taken into account given its heterogeneity in space and time. The surface traces of the faults are visible, well-mapped and constrained, but we simplified the characteristics of the sliding plane by imposing a uniform slip on the whole rectangular surface. We did not take into account visco-elastic or elasto-plastic behaviors or any differential flank movement inferred by a number of authors recently (Palano et al., 2009; Currenti et. al, 2010; Bonforte et al., 2011).

4. Modeling

For each model, $\Delta \text{CFS}$ values are computed on faulting planes and on the sliding surface (Figure 2). The normal stress $\sigma_m$ is evaluated on dike fractures and volumetric strain $\Delta \varepsilon$ on the spherical surface of magmatic reservoir. The parameters of sources and receiver structures are described in Table 1 and 2, respectively. Four deformation models were tested: M1, inflating of a spherical magmatic source (Figure 3, M1); M2, opening of eruptive fissures (Figure 3, M2), divided into two models A) for South dike and B) North East dike; and M3, sliding of planar surface (Figure 3, M3). Our numerical results of $\Delta \text{CFS}$ on each receiver structures are reported in Tables 3-6.

4.1. Model 1 - Mogi Source

a) Stress calculations
We first considered stress changes associated with a reservoir inflation (depth = 3.0 km, roughly coincident with the center of the SP). M1 shows a decrease of CFS along the PR and PF2 segments and an increase along the PF1 segment, with the latter showing a maximum value of 1.4 bars along the western edge (see M1 in Figure 4 and Table 3 for maximum and minimum ΔCFS values). A decrease and an increase close to zero were computed on PF3 and PF4 planes, respectively (Table 3). M1 induces a stress increment on STF1 and SVF closer portions (0.3 and 0.2 bars). The MF, SLF and TTF planes are subjected to a slight positive increment on the top edge (in a range between 0.1 and 0.2 bars) (Figure 4, M1). Moreover, the movement of STF2 is inhibited by the inflation of MR. Finally, the inflation of spherical chamber favors the closure of the NE and South dikes significantly. On the sliding plane, we observed a decrease of ΔCFS in the northwestern part of the plane (minimum value about -2 bars) and a very slight positive variation (0.2 bars) along the remaining part of the surface.

The simulations performed moving the depth of MR do not change the scenario described before drastically and significant variations only affect a few structures. A shallow MR (depth = 0.6 km; roughly coincident with the top boundary of the SP) does not change the pattern of the static stress on all the faults considered, and the intensity is only slightly affected. Also the NE dike shows almost unaltered features and only a very small part of the dike (near MR) underwent an unclamping effect. The most important variation is observed on the SP, which experienced a positive CFS variation of 2 bars. The S dike also showed a different pattern in ΔCFS distribution; indeed, the closure of the S dike is strongly encouraged only in the portion near MR, while the remaining part underwent an unclamping effect. The inflation of a deeper MR (depth = 5.4 km; roughly coincident with bottom boundary of the SP) does not change the static stress pattern on the SP and the S and NE dikes. A slight change in the intensity affected both dikes, enhancing the closure trend observed with a 3 km depth MR. Also the majority of the faults considered show unchanged features and only MF experienced a positive CFS variation until 1.4 bars.

12
In summary, the depth of an inflating shallow crustal reservoir may change the scenario evaluated slightly and only the flank movement seems significantly affected by the depth of MR; indeed, very shallow MR may promote flank movements, while deeper MR inhibits them. In general, a shallow MR discourages dike intrusion into the Mount Etna rift zones and promotes the stress triggering on the westernmost portion of PF.

b) Displacement calculations

The expansion of MR at 3 km depth induced the uplift of the nearby structures, such as PR, PF1 and PF2 (see Figure 5 and Table 3 for maximum and minimum displacement values). The inverse component is replaced by left-lateral movement on PF3 and PF4 components. The displacement values are progressively reduced from the western to eastern part. SLF, STF2, TTF and MF shows a right-lateral movement. On STF1, SVF and SP planes an uplift is favored. In particular, on the SP a maximum value of 2.4 centimeters of thrust movement is computed. This result changes drastically if we consider a very shallow crustal reservoir, which inverts the observed trend, promoting seaward movements of the eastern flank. It is clear that for this aspect of the problem the boundary condition set in the model (source depth) plays a basic role and highlights just how crucial the depth constraint is in ground deformation inversion analyses.

4.2. Model 2A – South Dike

a) Stress calculations

Intrusion along the S dike favors the closure of NE dike with a negative unclamping effect ($\sigma_m$ maximum value is about of -32 bars). In the M2a we observe a decrease of $\Delta$CFS on the PR segment (max value -4.5 bars). On the PF system $\Delta$CFS values are negative except on PF1 with a positive stress variation reaching a maximum value of 1.4 bar on the upper part of plane (Table 4). PF2, PF3, PF4 and SLF segments show a slight increase but in general all planes show a reduction
of ∆CFS. STF1, STF2, SVF and TTF similarly underwent a reduction of ∆CFS (see M2A in Figure 4 and Table 4 for maximum and minimum ∆CFS values). On SP a maximum positive stress change is computed for the part of the plane closest to the magmatic feeding system. Finally, the S-dike intrusion induces a compression (ε>0) on the MR located beneath the summit craters (see Figure 4, M2A).

b) Displacement calculations

The opening of SD encourages a normal movement of SP. The direction of displacement vectors on SVF, SLF, STF1, STF2 and MF shows a right-lateral movement associated with the dip-normal component. PR and TTF segments show the reverse movement. All PF segments move with a pure left-lateral strike slip (see Figure 5 and Table 4 for maximum and minimum displacement values).

In summary, magmatic activity in the South Rift closes the North East Rift and mobilizes the East and North East region of the unstable block.

4.3. Model 2B – North East Dike

a) Stress change calculations

In M2B we find that intrusion along the NE dike into the rift zones causes significant increase of ∆CFS on PR and PF1, with maximum values of about 320 bars and 100 bars, respectively. On the upper part of PF2 elastic stress changes increase to 3.4 bars. PF3, STF1, SVF, STF2 and TTF show a decrease of static stress variations (Table 5). SLF and MF are brought close to failure on the shallower portions of fault planes with higher values of 2.3 and 5.3 bars, respectively (see M2B in Figure 4 and Table 5 for maximum and minimum ∆CFS values). A significant negative unclamping effect on the walls of the S dike is found (max σ_m value about of -26 bars). The opening of the NE dike favors the decompression of MR with ε_max about of -4.8e-5 m³ (ε<0 volumetric strain is negative for decompression). Finally, we observe that because of its dimension and geometry, the
NE dike is more efficient in transferring stress on the sliding plane with respect to the S dike. On the shallower portion of SP the maximum value of ΔCFS reaches 2.6 bars (Table 5).

b) Displacement calculations

The most important results regarding displacement calculations show that the opening of the NE dike favors the sliding of flank with a transtensive component (see Figure 5 and Table 5 for maximum and minimum displacement values). All modeled faults, such as TTF, SVF, STF1, STF2, MF and STF are kinematically compatible with a right-lateral movement associated with a normal dip component. On PR, PF1 and PF2 planes a transpressive left-lateral movement is favored. Towards the east we found only left transcurrent component on PF3 and PF4 structures.

4.4. Model 3 – Sliding Plane

a) Stress calculations

We found a positive ΔCFS with max values of about 1.7 and 1.5 bars in the upper part of PF1 and PF2, respectively, and an increase of static stress in the lower portion of PF3 and PF4 (max about of 3.5 bars). The relative position between SP and receiver faults also resulted in an increase in static stress on TTF plane. Thus, we estimated a positive ΔCFS in the lower part of this structure with a maximum value of 3 bars (see M3 in Figure 4 and Table 6 for maximum and minimum ΔCFS values). Small increases of elastic stress are found on the MF, SLF, SVF, STF1 and SFT2 faults (Table 6). The sliding of the plane beneath the eastern flank seems to favor a compression for MR (ε>0 volumetric strain is positive). The unclamping effects for two vertical eruptive fractures located on the northeast and southern flank of volcano was estimated. We observed that SP induces the closure in the upper part of tabular dikes. Instead, a small opening is favored in their deeper zones (about 0.1 bars) (Figure 4, M3). This interaction depends on the dimension of modeled eruptive fractures and the depth of SP. In brief, the unstable condition of flank sliding toward the
sea may affect the magmatic system. Decompression of plumbing system may lead to the ascent of new magma or modify the condition of overpressure with the formation of bubbles (Hill, 2002).

b) Displacement calculations

The results of our simulations (see Figure 5 and Table 6 for maximum and minimum displacement values) show that the transtensive movement of SP encourages the dip normal displacement on PR, PF1 and PF2. By contrast, PF3 and PF4 moves according to a dip-normal associated to a left lateral movement. Coherently to observed kinematics STF1, STF2, SLF, SVF and MF are encouraged to move with a transtensive component, whereas a transpressive movement is determined for TTF.

5. Discussion and conclusions

During these last decades Mount Etna volcano has undergone several eruptions that have highlighted intriguing trigger mechanisms and have featured dike intrusions, activation of seismogenic faults and aseismic ground deformations.

Geophysical studies suggest that complex dynamics, involving more than one source (seismogenic sources and dikes), is a relatively common characteristic of eruptive episodes on Mount Etna. Gresta et al. (2005), for instance, highlighted that earthquakes along the PF and STF were induced by the static stress variations associated with the emplacement of eruptive dikes during the 1981 and 2001 eruptions, respectively. More recently, the pressure increase due to magma ascent episodes occurring in 1997-1998 at Mount Etna has been demonstrated to be responsible for the reactivation of seismogenic structures on the western side of the volcano (Bonanno et al., 2011). In Bonanno et al. (2011), the intrusive process was modelled as an inflating Mogi source located at 5.5 km depth, but in the present work, we emphasize the crucial role of the boundary condition set in the model (source depth) and show the possible scenarios with a shallower MR depth (Model M1).
The July-August 2001 eruption was characterized by a very complex field of flank eruptive fractures located largely on the upper southern slope of the volcano (Monaco et al., 2005). The eruption onset was preceded and accompanied by significant earthquakes (Patanè et al., 2003b) and marked ground deformations (Bonaccorso et al., 2002). The main source of deformations was modelled by a tensile dislocation located on the South Rift zone (Puglisi et al. 2008) as also confirmed by the Seismic Moment Tensor inversions of the best constrained earthquakes that heralded the opening of the eruptive fractures (Saraò et al., 2010). Our present model M2A takes account of the main behaviour of the magmatic source for this eruption well.

The October 2002 - January 2003 eruption occurred on two sides of the volcano, along the upper north-eastern (NE Rift zone) and southern (South Rift Zone) flanks. Once again, earthquakes and ground deformations preceded and accompanied the opening of the eruptive fractures (Barberi et al., 2004 and reference there in). The two intrusive dikes have been satisfactorily modelled by two separate tensile dislocations (Aloisi et al., 2003). During the first stage of the eruption, several seismogenic structures on the eastern flank became successively active. This was explained as due to the transfer of elastic stress from the magmatic source to faults (PR and PF) and afterwards from faults to faults (Barberi et al., 2004). Our present model M2B is schematically representative of the first stage of the above cited domino effect phenomena.

Finally, the 2004–2005 eruption emitted a highly degassed magma from a sub-terminal fracture. During the first weeks of activity, the erupted magma was already residing inside the volcano, probably since the 2002-2003 eruption, while later it mixed with new magma ascending through the central conduit system (Corsaro et al., 2009). Magma intruded passively due to the exceptional extension on the summit area caused by the large sliding of the eastern flank of the volcano (almost 9 cm of slip; Bonaccorso et al., 2006). The east flank sliding toward the sea induces a decompression on the shallow magma plumbing system as foreseen by our model M3 that simulates the unstable condition of this sector.
In this work we have investigated, by using the Boundary Element Method, how (i) the inflating of a deep spherical source interacts with a sliding plane and with faults and rift elements; (ii) the opening of eruptive fissures affects the sliding movement of the eastern sector of Mount Etna, encouraging earthquakes on fault planes; and (iii) the instability of the eastern flank governs the kinematics of faults and/or triggers the ascent of magma. The results presented here are strongly dependent on all the assumptions made. In particular, the lack of seismological constraints (hypocenter patterns and compatible fault plane solutions) for the sliding plane induced us to simplify the geometry of a detachment volume that remains/lies at the base of the instable sector. Nevertheless, our numerical results show good agreement with deformation measurements that well-describe the eastern flank dynamics of Etna volcano (e.g., Bonforte et al., 2008; Puglisi et al., 2008).

The main results obtained are the following:

1. The inflation of a magma reservoir encourages the slip on the westernmost segment of the Pernicana fault (PF).
2. The depth of MR is crucial, very shallow depth MR promote seaward movement of the eastern flank, while deeper MR (3.0 - 5.5 km) inhibit the movement.
3. Dikes intruding either on the NE or/and South Rift Zones favor the sliding of the planar source in its upper part and along the westernmost of PF.
4. The intrusion (opening) of a South dike favors the closure of a NE dike, while at the same time the opening of NE tensile fracture inhibits the ascent of magma along the South zone.
5. The intrusion of a NE dike (for dimension and kinematics) favors the Eastern flank sliding, more than the opening of an S dike.
6. The opening of a NE dike encourages the decompression of the magma plumbing system (depth = 3.0 km), evaluated by a high negative value of volumetric strain.
7. The passive sliding of SP promotes an increase of CFS on the westernmost and the central segments of PF. Its easternmost segments are brought close to failure at their bases.
8. The unstable condition of flank sliding toward the sea may affect the magmatic system and 
decompression of plumbing system may lead to a new magma ascent.

9. The western part of Pernicana fault (PF1) experienced a positive CFS for all the scenarios 
hypothesized. The other segments underwent a positive stress variation only in M2B and M3. 
In particular, Model M2B highlights the governing role of the intrusion in the NE Rift on the 
dynamics of this structure and on the dynamics of the Provenzana fault too.

10. Other faults considered seem to be less sensitive to the stress variation induced by sources 
considered, with the exception of three structures. SLF and MF underwent a significant 
positive CFS variation in model M2B, and TTF experienced an increase in static stress in 
model M3.

These results schematically represent possible scenarios of the evolution of the kinematic “activity” 
of Mount Etna volcano. The three basic elements (magma dynamics, earthquake occurrence and 
flank instability) interact with each other, alternating their active or passive role in a broader 
combination of domino effects. Our results are in general agreement with the findings of Walter et 
al. (2005), despite the significant differences in the structural setup and in the definition of 
geometrical characteristics of the single geological objects. The main difference regards the effect 
of interaction between magma reservoir and sliding plane; the latter was defined by Walter et al. 
(2005) with geometrical characteristics that are entirely different from those hypothesized in this 
paper. Currenti et al. (2008) use a very simplified structural setup taking into account only the two 
rift zones and the main fault systems in eastern flank. Regardless of differences, the result obtained 
are similar with the exception of the NE dike response to an intrusion in the South rift. Currenti et 
al. (2008) have also demonstrated that the introduction of an heterogeneous medium induces 
variation in the intensity of $\Delta$CFS (as a function of modelled elastic parameters), but does not 
distort the geometrical pattern. The authors also show how the stress shape is affected by Mt. Etna
topography. The main discrepancies are largely restricted to the volcano summit area because of the accentuated topography.

We note that the strength of our approach lies in the fact that we evaluate the distribution of the CFS pattern while taking into account the relevant effects of topography. In addition, we use a method that requires a processing time of some tens of minutes. It allows modifying an evolving erupting scenario simply by adding or altering magmatic sources and/or receiving structures without needing any further computational time that other numerical methods require (e.g., re-mesh of medium in Finite Element Method). The real-time seismic and geodetic networks currently operating on Mount Etna are able to provide good enough data (both in number and quality) to satisfactorily (and rapidly) constrain the source(s) responsible for volcanic unrest. The application of the Boundary Element Method during volcanic unrest appears a promising tool to provide some possible scenarios of evolving volcanic activity in near real-time in terms of flank sliding and/or activation of either (both) seismogenic faults and/or magma bodies.

Acknowledgments

This work was funded by the INGV-DPC project V4_Flank. We thank Stephen Conway for correcting and improving the English. Amalia Bonanno was supported by INGV-DPC fellowships. We thank the editor Joan Marti and two anonymous reviewers for the careful revision that enabled improving the paper significantly. The DEM used in this paper is the result of the integration of data available at INGV, in particular the DEM_Sicilia 1999 (Tarquini et al., 2007) and the DEM_Lidar 2005 (Neri et al., 2008). This DEM was produced in the framework of the ASI-SRV project, and INGV-DPC V4-Flank project, thanks to Dr. F. Guglielmino (INGV, Osservatorio Etneo).
References


**Figure captions**

**Figure 1.** Structural sketch map of Mount Etna: Provenzana Fault (PR); Pernicana fault (PF); Santa Venerina fault (SVF); Timpe fault system STF; Moscarello fault (MF); Tremestieri–Trecastagni fault (TTF); San Leonardello Fault (SLF); Central Craters (CC); South Rift and North - East Rift are also indicated. In the upper inset, the location of Mount Etna in the central Mediterranean area and a simplified geological map of eastern Sicily are also reported. The INGV-G-DEM is in the WGS84 reference system and the projection is UTM33.

**Figure 2.** a) Top view and b) prospective view of the boundary Element model built in Poly3D environment show spatial relationships between topography, faults, magmatic reservoir, eruptive fractures, sliding plane and faults. For structure legend see tables 1 and 2.

**Figure 3.** Sketch of four models proposed showing: M1) Inflation of Magmatic Reservoir (MR); M2A) Opening of South Dike (SD); M2B) Opening of North-East Dike (NED); M3) Transtensive movement of Sliding Plane (SP); the acting sources (red) and the receiver structures (black) are drawn. For faults legend see table 2.

**Figure 4.** Three dimensional view showing the pattern of ΔCFS produced by inflation of MR (M1) along modeled fault planes; Opening of SD (M2A); Opening of NED (M2B) and Transtensive movement of SP (M3). The color bar specifies the maximum and minimum ΔCFS values that are reported for each single structure in Tables 3-6.

**Figure 5.** Three dimensional view showing the pattern of the displacement produced by inflation of MR (M1) along modeled fault planes; Opening of SD (M2A); Opening of NED (M2B) and
Transtensive movement of SP (M3). The color bar specifies the maximum and minimum displacement values that are reported for each single structure in Tables 3-6.
Table titles

Table 1. Description of deformation source inputs used in the numerical modeling. Xc, Yc and Zc represent the location of the center, while L and W correspond to length and width for each source.

Table 2. Position and geometrical parameters of receiver fault planes modeled in Poly3D program (for symbols explanation see table 1).

Table 3. Coulomb stress changes and displacements (U) induced on considered structures (see table 1 and 2 for structure names) by the inflation of MR (model M1).

Table 4. Coulomb stress changes and displacements (U) induced on considered structures (see table 1 and 2 for structure names) by the opening of SD (model M2A).

Table 5. Coulomb stress changes and displacements (U) induced on considered structures (see table 1 and 2 for structure names) by the opening of NED (model M2B).

Table 6. Coulomb stress changes and displacements (U) induced on considered structures (see table 1 and 2 for structure names) by the transtensive movement of SP (model M3).

E. Privitera\textsuperscript{1}\textsuperscript{*}, A. Bonanno\textsuperscript{2}, S. Gresta\textsuperscript{2,3}, G. Nunnari\textsuperscript{2}, G. Puglisi\textsuperscript{1}

1) Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Piazza Roma 2, I-95123 Catania, Italy.
2) Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica, Elettronica ed Informatica, Dipartimento di Elettrica, Elettronica e dei Sistemi, Viale Andrea Doria 6, I-95125, Catania, Italy.
3) Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Dipartimento di Geologia e Geofisica, Corso Italia 57, I-95129 Catania, Italy.

Running Title: Coulomb stress changes at Mount Etna

* Corresponding author:

Eugenio Privitera
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo
Piazza Roma 2, I-95123 Catania (Italy)
E-mail: eugenio.privitera@ct.ingv.it
Tel.: ++39 095 716 5844 – Fax ++39 095 716 5826
Abstract

In the last thirty years, numerous eruptions and associated deformation episodes have occurred at Mt. Etna volcano. Datasets recorded by continuous monitoring of these episodes magmatic processes provide a unique opportunity to study the relationships between volcanism, flank instability and faulting activity. We have investigated the stress triggering mechanism between magmatic reservoir inflation, intrusive episodes and flank dynamics. Using three-dimensional numerical Boundary Elements Models we simulated volcano-tectonic events and calculated Coulomb stress changes. Using this modeling approach, we analyzed four realistic scenarios that are representative of recent kinematics occurring at Mt. Etna well. The main results obtained highlight how (1) the inflation of a deep spherical magma source transfers elastic stress to a sliding plane and faults (2) the opening of the NE Rift and S Rift (to a less efficient extent) favor movements of the instable sector and may encourage seismicity on the eastern flank faults, and (3) the flank instability may trigger the uprisin of magma.

Defining the effects of the elastic stress transfer and relationships among the main forces acting on volcano, may help to forecast the possible eruption scenarios during future eruptive episodes of unrest at Mount Etna—and provide an important tool for decision makers during volcanic emergencies involving the highly populated areas which is important to reduce volcanic and seismic hazards on the highly populated eastern sector of the volcano.

Keywords: Numerical modeling, Coulomb stress changes, flank instability, volcano dynamics, Mt. Etna volcano, magmatic activity.
1. Introduction

Active volcanoes in densely populated areas represent a primary hazard that requires a operative and well-timed interaction between research institutions and civil defence authorities during unrest episodes. Consequently, involved researcher are encouraged to tune up affordable methods that can provide realistic scenarios of the eruptive evolution in near real-time.

Mount Etna dynamics is the result of a complex interplay between magma ascent in the plumbing system, dike emplacement, tectonic uplift, faulting and flank instability. Many studies have evidenced highlighted that at Mount Etna increases in static stress induced by dike intrusions bring faults closer to failure (Gresta et al., 2005). More recently, the pressurization of a magmatic reservoir was considered to trigger 1997-1998 Mount Etna seismic swarms as effects consequence of stress redistribution (Bonanno et al., 2011).

The increase in collected seismic and deformation measurements and the rapid growth of computational power have enabled improving investigations into the relationship between faulting, flank dynamics and magmatic activity using numerical modeling. Walter et al. (2005) modeled the 2002-2003 Mt. Etna eruption by means of Boundary Element Method, evaluating the influence of four different sources on the kinematics of the volcano’s eastern flank. They found a feedback relationship between flank movements and intrusive processes The numerical models suggest that magmatic activity (inflation of a reservoir and emplacement of dikes) encourages motion of the eastern flank, which, in turn, promotes magma to rise up to shallower levels within the volcano. Currenti et al. (2008) performed a Finite Element Modeling approach to evaluate ground deformation and the resulting stress redistributions in response to magmatic processes occurring during the 2002–2003 Etna eruption. They found that the changes in the state of stress generated by the southern dike produce an extensional stress field that favors magma propagation along the north-east Rift. The static stress changes computed onto the Timpe Fault System and the Pernicana
Fault indicate that the magma intrusions on the southern and northeastern flanks prompted these seismogenic structures to slip. Volcano flank instability has been recognized at many volcanoes around the globe. Dynamics of a flank is driven by combinations of gravity, magma pressure, lack of buttressing support, presence of an underlying weak substrate to the edifice, increasing pore pressure associated with volcanism, dyke emplacement, tectonic uplift and faulting (e.g., Siebert, 1984; McGuire, 1996; Merle and Borgia, 1996; Voight and Elsworth, 1997; Tibaldi, 2001; Acocella et al., 2006). In some cases, the interaction of several factors may make defining the main triggering cause of the instability difficult (Voight and Elsworth, 1992).

The increase in collected deformation measurements and the fast growth of computational power have permitted better investigating the relationship between flank dynamics and magmatic activity using numerical modeling. In this last decade, a significant proliferation of numerical modeling studies have highlighted that eruptions, flank instability and faulting episodes are related. Through limit equilibrium methods (LEM) and finite difference modeling (FEM), a 2D stability analysis of the NW flank of the Stromboli edifice was performed by Apuani and Corazzato (2009). The authors show that the tectonic seismicity of the area alone does not destabilize the studied slope. On the contrary, magma pressure in dykes can represent a destabilizing factor. Walter et al. (2005) modeled the 2002-2003 Mt. Etna eruption by means of Boundary Element Method, evaluating the influence of four different sources on the kinematics of the volcano’s eastern flank. They found a feedback relationship between flank movements and intrusive processes. The numerical models suggest that magmatic activity (inflation of a reservoir and emplacement of dykes) encourages motion of the eastern flank, which, in turn, encourages the rise of magma to shallower levels within the volcano. Using Coulomb stress simulations, Segall et al., (2006) have demonstrated that a recent dike intrusion probably triggered a slow fault slip event on Kilauea volcano’s mobile south flank. At Mount Etna, many studies have evidenced that increases in static stress induced by dike intrusions bring faults closer to failure (Gresta et al., 2005). More recently, the pressurization of a
magnetic reservoir was considered to trigger seismic swarms as effect of stress redistribution (Bonanno et al., 2011).

In this paper, we will use numerical simulations to hypothesize four realistic scenarios at Mt Etna in which one source at a time is active. Coulomb stress changes will be computed on three dimensional fault surfaces in order to investigate the interaction between intrusion/eruptive episodes, tectonic activity and flank instability. Understanding which factor influences the instability of the Mt. Etna volcanic edifice is therefore crucial for hazard assessment and mitigation.

The method used requires a processing time of some tens of minutes and is thus suitable for a near real-time application in order to forecast the evolution of future unrest episodes.

2. Etna volcano setting

Mount Etna is a Quaternary basaltic stratovolcano located on the east coast of Sicily. It stands between two first-order tectonic elements: the Apenninic-Maghrebian Chain and the Hyblean Foreland (inset of Figure 1). The northern and western sectors of the volcano lie over metamorphic and sedimentary rocks belonging to the frontal nappes system of the Apenninic-Maghrebian Chain, whereas the southern and eastern sectors overlie marine clays of Quaternary age, deposited on the flexured margin of the northward-dipping downgoing Hyblean Foreland (Lentini, 1982) (inset of Figure 1).

Volcanic Activity

Recent volcanic activity of Mount Etna is characterized by eruptions at the four summit craters, and by fissure eruptions and dike intrusions at the rift zones oriented NE, south and west. During the last 400 years, about half of the eruptions occurred along the rift zones through fissures opened on
the volcano flanks (Behncke and Neri, 2003). These fissures are usually related to the lateral intrusion of dikes radiating from a shallow magma conduit system.

Important results obtained during recent decades, mainly due to the rapid improvement in the seismic and deformation monitoring networks, have identified the main tectonic structures and the paths along which the magma rises beneath Mount Etna. Seismic tomographic images define the basement of Mount Etna as characterized by a main upper and middle crustal intrusion complex, with high \( V_p \) values (High Velocity Body; HVB), whose top is located at about 4 km below sea level (b.s.l), beneath the southeastern flank of Mount Etna (e.g., Aloisi et al., 2002; Chiarabba et al., 2004; Patanè et al., 2006). In recent years, magma intrusions have ascended along the western boundary of the HVB, as documented by ground deformation and seismic studies (e.g., Bonforte et al., 2008; Puglisi et al., 2008 and references therein). It is noteworthy that the lack of evidence for large magmatic storage volumes strongly supports the idea that, during its ascent along the western boundary of the HVB, the magma is stored as a plexus of dikes or sills, as suggested by Armienti et al. (1989) to justify the typical polybaric evolution of the magmas within the plumbing system of Mount Etna (Corsaro and Pompilio, 2004).

Structural framework

The shallow geodynamic behavior of Mount Etna seems to be controlled by the flank instability processes implying causing the seaward sliding of the volcano eastern side as a result of a complex interaction between regional tectonic stresses, gravity forces acting on the volcanic edifice and the dykedike-induced rifting (Neri et al., 1991; Borgia et al., 1992; Lo Giudice and Rasà, 1992; McGuire, 1996; Rasà et al., 1996).

Although the published models propose different explanations of the origin and depth of the flank movement, they all agree in identifying the Pernicana Fault system, PF (Figure 1) as the northern boundary of the unstable sector. This is a transtensive fault with left lateral movement. It is characterized by a high slip rate from 10 to 28 mm/year with shallow (<3.5 km) and moderate
seismic activity (2<M<4.5) (Azzaro, et al., 1997; Azzaro et al., 2001). The PF activity is kinematically connected to the episodic opening and eruptions of the nearby NE Rift (Figure 1) (Neri et al., 1991; Gardunò et al., 1997; Tibaldi and Groppelli, 2002; Acocella and Neri, 2003; Acocella et al., 2003). The southern part of the western boundary of the unstable sector is represented by the South Rift (Rasà et al., 1996) joining, southeastward, with the Tremestieri-Trecastagni fault system TTF (Figure 1). This fault system is made up of a number of NNW-SSE striking faults showing evident right-lateral displacement and is also characterized by very shallow seismicity, with typical focal depths of 1–2 km. Other tectonic lineaments dissect the southern and south-eastern sectors of the volcano, such as the Timpe Fault system (STF1 and STF2), San Leonardello Fault (SLF), Moscarello Fault (MF) and Santa Venerina Fault (SVF) (Figure 1). Most of these faults have high slip-rates from 1.0 to 2.7 mm/year (Azzaro, 2004; Puglisi et al., 2008), partly due to shallow seismicity (Lo Giudice and Rasa, 1992; Montalto et al., 1996). Instrumental data, according to historical and macroseismic information (Azzaro et al., 1999), indicate that more than 80% of earthquakes are shallower than 5 km (Gresta et al., 1990), wherever despite their moderate magnitude, have often produced coseismic surface faulting. Fault plane solutions of these events frequently indicate a right lateral strike, combined with an important significant normal component. More recent proposals emphasize the complexity of the unstable sector, showing how these faults represent the main structures that separate portions with slightly different velocities of downslope movement of this sector of the volcano (Bonforte et al., 2011).

3. CFS Modeling

In this paper, we investigate the relationships between volcanism, flank instability and the faulting activity in terms of elastic stress change. We hypothesize the possible triggering conditions in which only one deformation source at a time is active. Our modeling approach
investigates examines how (1) the inflation of a spherical deep source interacts with the sliding plane and faults, (2) the opening of an eruptive fissure (at North-East or South Rift zone) affects the sliding movement of eastern sector or seismic activity on fault planes, (3) the flank instability governs the kinematics of faults and triggers (or inhibits) the ascent of magma (Figure 3).

3.1. Modeling Method

Taking into account the topographic effects, we compute boundary element solutions of deformation sources embedded in an elastic half-space, using the program Poly3D 2.1.8 (Thomas, 1993; Maerten et al., 2005). Based upon the boundary element method, BEM (Crouch and Starfield, 1983), Poly3D includes the fundamental solution to an angular dislocation in a homogeneous, linear elastic half-space (Comninou and Dundurs, 1975). A number of angular dislocations are juxtaposed to create polygonal boundary elements that collectively define discretized objects of arbitrary shape in three dimensions. Boundary conditions in Poly3D can be applied remotely (as constant stresses or strains), at the centers of each element of the discretized fault surface (as tractions or displacement), or as combinations. The program solves a series of linear algebraic equations that describe the influence of on each element of on every other element under a prescribed set of boundary conditions. Once the displacement distribution along a fault is determined, the static stress, strain and displacement fields around the fault are calculated using influence coefficient equations that relate the displacements at the fault to the resultant elastic field at any point in the surrounding linear elastic medium. This solution is superimposed upon the remote stress field boundary condition to produce the total elastic field. Note that in our modeling processes we do not take into account the regional stress field. Indeed, geological and geophysical evidences highlight the heterogeneity of the Mount Etna stress field in time and space (e.g., Barberi et al., 2000 and reference therein). According to Gresta et al. (2005), from a kinematic point of view, the coexistence of structural elements such as PF and TFS are incompatible with a homogeneous stress field. Consequently, in this paper we use only “Specified fault calculation” for ΔCFS computation.
and we relinquish the evaluation of “optimally oriented faults” (strongly influenced by the regional stress field) as suggested by several authors in such cases (e.g., Gresta et al. 2005, Bonanno et al., 2011 and references therein).

In Poly3D we build polygonal elements for modeling complex surfaces with curving boundaries. Surface fault changes in strike are meshed without gaps. The spherical void is built by assembling triangular, hexagonal or pentagonal elements in the same manner as a football.

The Boundary Element Method was chosen because it is suitable for near real-time applications since it allows modifying an evolving scenario simply by adding new magmatic sources and/or receiving structures. The use of Poly3D enables avoiding meshing the medium every time a structural modification is carried out, in such a way the computational time is limited to tens of minutes.

3.2. Setup of deformation source parameters

Following on from In agreement with recent geophysical evidences studies (Patanè et al., 2003a; Chiarabba et al., 2004; Bonaccorso et al., 2006; Bonforte et al., 2008; Puglisi et al., 2008; Chiarabba et al., 2004; Patanè et al., 2003b), we considered a spherical cavity constructed by of 815 triangular elements, simulating a 1 km in radius reservoir 1 km in radius at 3 km depth (Figure 2). An increase in the magma pressure perturbs the stress field in the surrounding crust. Using positive traction boundary conditions, normal to the element, we defined a volume increase of $7.9 \times 10^6$ m$^3$, a realistic value for inflating magma bodies (Bonaccorso et al., 2006; Palano et al., 2007; Puglisi et al., 2008).

The center of the MR was located beneath the Summit Craters area (for details see Table 1). In addition, in order to evaluate the influence of the depth of an inflating reservoir (hereafter MR) on the other considered structures and in particular on SP, we performed two further simulations moving the center of the sphere by $\pm 2.4$ km. These steps of depth were chosen since they roughly correspond to the projections respectively of the top and the bottom of SP (see below) along the vertical line intersecting the Summit Craters.
The center of the MR was located beneath the Summit Craters (for details see Table 1).

DykeDike intrusions were modeled by rectangular planes with a curving top boundary matching the topography (Figure 2). A uniform element-normal displacement discontinuity of 2.5 meters is imposed on dyke-dikes. The geometry of the North-East and South dikes used in this paper is based on values published by Puglisi et al. (2008). In any case, openings larger than 3 m do not modify the results significantly. The parameters of the modeled dikes are reported in Table 1.

In agreement with inversion models inferred from ground deformation measurements (Puglisi and Bonforte, 2004; Bonaccorso et al., 2006; Bonforte et al., 2008), we modeled a sub-horizontal sliding plane (hereafter SP) as a rectangular surface long 20 km long and wide 25 km wide, with a main normal (7.7 cm) and minor dextral component (4.4 cm) (Figure 2). Although the slip amount depends on the period investigated, inversion models published (Puglisi and Bonforte, 2004; Palano et al, 2007) found an overall sliding in the range of 4 – 9 cm/year in the period 1993 -2000.

3.3. Setup of topography and fault parameters

We used the Global Digital Elevation Model (hereafter the INGV-G-DEM) that merges inland DEM (Tarquini et al., 2007; Neri et al., 2008) and bathymetric data sets available for the Mount Etna area (Bosman et al., 2007; Cavallaro et al., 2008). The original data were integrated and interpolated, becoming homogenous with a final resolution of 10 m pixel size. Using INGV-G-DEM resampled with a resolution of 100 m, we built a rectangular surface of 3500 km² (extending for about 70 kilometers in longitude and 50 km in latitude) and discretized with 3184 triangular meshes (Figure 2). Volcano topography is assumed as a traction-free surface in order to study the influence on displacements and stress numerical calculations. According to geological and structural studies integrated with seismic data, we modeled the main tectonic lineaments of the eastern sector of the volcano. We built the faulting planes as rectangular surfaces with a curving top boundary matching the topography, with each plane is discretized by triangular meshes with a mean areal dimension of about 0.027 km². In particular, Provenzana Fault (PR) shows a change of...
strike from N35°E to N55°E, thus a curving top boundary is modeled. The Pernicana Fault (PF) is composed of four segments; defined as PF1, PF2, PF3 and PF4, striking N88°E, N102°E, N114°E, N120°E, respectively (Figure 2a). The southern border of the unstable sector is represented by the Tremestieri-Trecastagni Fault system (TTF) modeled with a sub-vertical plane with a sharp change in direction (from N103°E to N150°E). The Timpe Fault System is made up of two segments, STF1 and STF2, with strike direction N165°E and N3°W, respectively. These latter fault systems, together with SLF, MF, SVF, all striking from N173°E to N140°E, reached the depth of the sliding plane (see Figure 2b). The sub-vertical fault planes above the sliding plane (SP) have a width ranging from 1950 to 2800 m (for details see Table 2). In our models, we assume that receiver faults are discontinuities embedded in an elastic half-space in which they are free to move in any direction.

3.4 Coulomb Stress Changes

We calculated Coulomb stress changes caused by volcanic sources on modeled fault planes, while computing changes in volumetric or normal stress near the magma chamber or eruptive dikes caused by flank movements or earthquakes (e.g. Savage and Clark 1982; Nostro et al. 1998; Toda et al. 2002).

It is widely accepted that static stress changes (≥ 0.1 bars) induced by a magmatic source may trigger seismicity within a rock volume close to the critical state of failure (e.g., Reasenberg and Simpson, 1992; Stein, 1999). Spatial and temporal relationships between stress changes and earthquakes are explained through the Coulomb failure stress change, defined as:

\[ \Delta CFS = \Delta \tau + \mu (\Delta \sigma_n + \Delta P) \]  

(1)

where \( \Delta \tau \) is the shear stress change computed in the direction of slip on the fault, \( \Delta \sigma_n \) is the normal stress change (positive for extension), \( \mu \) is the coefficient of friction and \( \Delta P \) is the pore pressure change (e.g., King et al., 1994; Harris, 1998; King and Cocco, 2000). For simplicity, we considered...
here a constant effective friction model (Beeler et al., 2000; Cocco and Rice 2002) that assumes that $\Delta P$ is proportional to the normal stress changes ($\Delta P = -B\Delta \sigma_n$, where $B$ is the Skempton parameter):

$$\Delta \text{CFS} = \Delta \tau + \mu' \Delta \sigma_n$$

(2)

where $\mu'$ is the effective friction ($\mu' = \mu(1 - B)$). The fault is brought closer to failure when $\Delta \text{CFS}$ is positive. In order to verify if dike intrusions or magmatic reservoir inflations are encouraged, we evaluate the change of the volumetric strain ($\Delta \varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$) on the magmatic reservoir and horizontal normal stress changes ($\sigma_m = \Delta \sigma_{xx} + \Delta \sigma_{yy}$ / 2) on the rift zone dikes. Indeed, the unclamping of a rift zone ($\sigma_m > 0$) induced by fault dislocations may facilitate the ascent of new magma and dike injection. In the same way, the unclamping may favor the decompression of the magma reservoir, leading to the formation and ascent of bubbles and then increasing the magma overpressure. We performed all calculations in a homogeneous Poissonian elastic half-space using a Poisson's ratio of $\nu = 0.25$ and a Young's modulus of $E = 75$ GPa, and a $\mu' = 0.4$.

### 3.5 Assumptions of numerical modeling

Coulomb stress changes are evaluated in a homogeneous elastic half-space. Thus mechanical heterogeneities, for instance due to thermal structure, a hydrothermal altered volcanic core or a mechanically rigid basement, are not taken into account by our models. As stated before, the regional stress field is not taken into account given its heterogeneity in space and time. The surface traces of the faults are visible, well-mapped and constrained, but we simplified the characteristics of the sliding plane by imposing a uniform slip on the whole rectangular surface. We did not take into account visco-elastic or elasto-plastic behaviors or any differential flank movement supposed inferred by a number of authors recently (Palano et al., 2009; Currenti et. al, 2010; Bonforte et al., 2011; Palano et al., 2009).
4. Modeling

For each model, ΔCFS values are computed on faulting planes and on the sliding surface (Figure 2). The normal stress σm is evaluated on dike fractures and volumetric strain Δε on the spherical surface of magmatic reservoir. The parameters of sources and receiver structures are described in Table 1 and 2, respectively. Four deformation models were tested: M1, inflating of a spherical magmatic source (Figure 3, M1); M2, opening of eruptive fissures (Figure 3, M2), divided into two models A) for South dike and B) North East dike; M3, sliding of planar surface (Figure 3, M3). Our numerical results of ΔCFS on each receiver structures are summarized reported in Tables 3-6.

4.1. Model 1 - Mogi Source

a) Stress calculations

We first considered stress changes associated with a reservoir inflation (depth = 3.0 km, roughly coincident with the center of the SP). The M1 shows a decrease of CFS along the PR and PF2 segments, and an increase along the PF1 segment. The latter has experienced positive stress with the latter showing a maximum value of 1.4 bars along the western edge (see M1 in Figure 4; M1 and Table 3 for maximum and minimum ΔCFS values). A decrease and an increase close to zero are computed on PF3 and PF4 planes, respectively (Table 3). The inflation of magmatic reservoir M1 induces a stress increment on STF1 and SVF on the closer portion (0.3 and 0.2 bars). The MF, SLF and TTF planes are subjected to a slight positive increment on the top edge (in a range between 0.1 and 0.2 bars) (Figure 4, M1). Moreover, the movement of STF2 is inhibited by the inflation of MR. Finally, the inflation of spherical chamber favors the closure of the NE and South dikes significantly. On the sliding plane, we observed a decrease of ΔCFS in the northwestern
part of the plane (minimum value about -2 bars) and a very slight positive variation (0.2 bars) along
the remaining part of the surface.

The simulations performed moving the depth of MR do not change the scenario described before
drastically and significant variations only affect a few structures. A shallow MR (depth = 0.6 km;
roughly coincident with the top boundary of the SP) does not change the pattern of the static stress
on all the faults considered, and the intensity is only slightly affected. Also the NE dike shows
almost unaltered features and only a very small part of the dike (near MR) underwent an
unclamping effect. The most important variation is observed on the SP, which experienced a
positive CFS variation until -2 bars. Also, the S dike also showed a different pattern in ΔCFS
distribution; indeed, the closure of the S dike is strongly encouraged only in the portion near MR,
while the remaining part underwent an unclamping effect. The inflation of a deeper MR (depth =
5.4 km; roughly coincident with bottom boundary of the SP) does not change the static stress
pattern on the SP and the S and NE dikes. A slight change in the intensity affected both dikes,
enhancing the closure trend observed with a 3 km depth MR. Also the majority of the faults
considered show unchanged features and only MF experienced a positive CFS variation until 1.4
bars.

In summary, the depth of an inflating shallow crustal reservoir may change the scenario evaluated
slightly and only the flank movement seems significantly affected by the depth of MR; indeed, very
shallow MR may promote flank movements, while deeper MR inhibits them. In general, a shallow
MR discourages dike intrusion into the Mount Etna rift zones and promotes the stress
triggering on the westernmost portion of PF.

b) Displacement calculations

The expansion of the magmatic reservoir at 3 km depth induced the uplift of the nearby
structures, such as PR, PF1 and PF2 (see Figure 5 and Table 3 for maximum and minimum
displacement values). The inverse component is replaced by left-lateral movement on PF3 and PF4
components. The displacement values are progressively reduced from the western to eastern part. SLF, STF2, TTF and MF shows a right-lateral movement. On STF1, SVF and SP planes an uplift is favored. In particular, on the Sliding Plane (SP) a maximum value of 2.4 centimeters as-of-thrust movement is computed. This result changes drastically if we consider a very shallow crustal reservoir, which that inverts the observed trend, promoting seaward movements of the eastern flank.

It is clear that for this aspect of the problem the boundary condition set in the model (source depth) plays a basic role and highlights just how crucial the depth constraint is in ground deformation inversion analyses.

4.2. Model 2A – South Dike

a) Stress calculations

Intrusion along the of S dike favors the closure of NE dike with a negative unclamping effect ($\sigma_m$ maximum value is about of -32 bars). In the M2a we observe PR segment with a decrease of $\Delta$CFS on the PR segment (max value -4.5 bars). On the PF system $\Delta$CFS values are negative except on PF1 with a positive stress variation reaching a maximum value of 1.4 bar on the upper part of plane (Table 4). PF2, PF3, PF4 and SLF segments show a slight increase but in general all planes show are involved with a reduction of stress changes $\Delta$CFS. STF1, STF2, SVF and TTF similarly underwent a reduction of $\Delta$CFS stress effect (see M2A in Figure 4 and Table 4 for maximum and minimum $\Delta$CFS values-M2A). On SP a maximum positive stress change is computed for evaluated on the part of the plane closest to the magmatic feeding system. Finally, the S-dike south-intrusion induces a compression ($\varepsilon>0$) on the MR magmatic reservoir located beneath the summit craters (see Figure 4, M2A).

b) Displacement calculations
The opening of SD encourages a normal movement of SP. The direction of displacement vectors on SVF, SLF, STF1, STF2 and MF shows a right-lateral movement associated with the dip-normal component. PR and TTF segments show the reverse movement, an inverse movement. All PF segments move with a pure left-lateral strike slip (see Figure 5 and Table 4 for maximum and minimum displacement values for details on the amount of slip). In summary, magmatic activity in the South Rift closes the North East Rift and mobilizes the East and North East region of the unstable block.

4.3. Model 2B – North East Dike

a) Stress change calculations

In M2B, we find that intrusion along the NE dike into the rift zones causes significant increase of $\Delta$CFS on PR and PF1, with maximum values of about 320 bars and 100 bars, respectively. On the upper part of PF2 fault, elastic stress changes increase to 3.4 bars. PF3, STF1, SVF, STF2 and TTF show a decrease of static stress variations (Table 5). SLF and MF are brought close to failure on the shallower portions of fault planes with higher values of 2.3 and 5.3 bars, respectively (see M2B in Figure 4 and Table 5 for maximum and minimum $\Delta$CFS values, M2B). A significant negative unclamping effect on the walls of the S dike is found (max $\sigma_{\text{in}}$ value about of -26 bars). The opening of the NE dike favors the decompression of magmatic reservoir MR with $\varepsilon_{\text{max}}$ about of $-4.8e^{-5}$ m$^3$ (volumetric strain is negative for decompression). Finally, we observe that because of its dimension and geometry, the NE dike is more efficient in showing stress transfer from the sliding plane more efficiently with respect to the S dike. On the shallower portion of SP, the maximum value of $\Delta$CFS reaches 2.6 bars (Table 5).

b) Displacement calculations
The most important results regarding displacement calculations show that the opening of the NE dike favors the sliding of flank with a transtensive component. All modeled faults, such as TTF, SVF, STF1, STF2, MF and STF are kinematically compatible with a right-lateral movement associated with a normal dip component. On PR, PF1 and PF2 planes a transpressive left-lateral movement is favored. Towards the east we found only left transcurrent component on PF3 and PF4 structures.

4.4. Model 3 – Sliding Plane

a) Stress calculations

We found a positive ΔCFS with max values of about 1.7 and 1.5 bars in the upper part of PF1 and PF2, respectively. On the contrary, we evaluated an increase of static stress in the lower portion of PF3 and PF4 (max about of 3.5 bars). The relative position between SP and receiver faults also resulted in an increase in conditioned the increasing of static stress on TTF plane. Thus, we estimated a positive ΔCFS in the lower part of this structure with a maximum value of 3 bars (see M3 Table 6 and Figure 4 and Table 6 for maximum and minimum ΔCFS values-M3).

Small increases of elastic stress are evaluated on the MF, SLF, SVF, STF1 and SFT2 faults (Table 6). The sliding of the plane beneath the eastern flank seems to favor a compression for a magmatic reservoir (MR) (ρ>0 volumetric strain is positive). The unclamping effects for two vertical eruptive fractures located on the northeast and southern flank of volcano were estimated. We observed that SP induces the closure in the upper part of tabular dikes. Instead, a small opening is favored in their deeper zones (about 0.1 bars) (Figure 4, M3). This interaction depends on the dimension of modeled eruptive fractures and the depth of sliding planeSP. In brief, the unstable condition of flank sliding toward the sea may affect the magmatic system. Decompression of plumbing system may lead to the ascent of new magma or modify the condition of overpressure with the formation of bubbles (Hill, 2002).
b) Displacement calculations

The results of our simulations (see Figure 5 and Table 6 for maximum and minimum displacement values) show that the transtensive movement of SP encourages the dip normal displacement on PR, PF1 and PF2. By contrast, PF3 and PF4 moves according to a dip-normal associated to a left lateral movement. Coherently to observed kinematics STF1, STF2, SLF, SVF and MF are encouraged to move with a transtensive component, whereas a transpressive movement is determined evaluated for TTF.

5. Discussion and conclusions

During these last decades Mt. Etna volcano has experienced several eruptions that have highlighted of different nature highlighting intriguing trigger mechanisms and have featured among dike intrusions, activation of seismogenic faults and aseismic ground deformations. For instance, in 1985 and 1986 (Azzaro, 1997) the simultaneous occurrence of significant earthquakes on Provenzana - Pernicana fault systems and the opening of the eruptive fracture some kilometers away occurred, but the lack of good quality ground deformation data hindered the understanding of the causal relationship.

The different patterns of ground deformation observed on Mt. Etna volcano during the last decade through GPS and InSAR data have enabled modeling the complex volcano tectonic phenomena that have occurred. In detail, both point sources (Mogi) and planar dislocations (i.e., Bonforte et al., 2008, 2011; Palano et al., 2008) have been widely used. Point pressure sources roughly take into account the radial component of the deformations occurred with respect to the central plumbing system, whereas planar sources well represent the deformation field produced by the dikes opening (tensile sources) and by faults or the seaward sliding of the eastern sector of the volcano, respectively (strike-slip or dip-slip sources).
On the whole, irrespective of the numerical results (i.e. source depth and/or dimensions), point pressure sources and planar dislocations have fully satisfied the need for modelling the different ground deformation patterns observed during the different states of the volcano dynamics. In some cases (i.e. Palano et al., 2008), the simultaneous effect of at least two different sources was invoked to better fit the measured deformations. Geophysical studies suggest that complex dynamics, involving more than one source (seismogenic sources and dykes), is a relatively common characteristic of eruptive episodes on Mount Etna. Gresta et al. (2005), for instance, had highlighted that earthquakes along the PF and STF were induced by the static stress variations associated to the emplacement of eruptive dikes during the 1981 and 2001 eruptions, respectively. More recently, the pressure increase due to magma ascent episodes occurring in 1997-1998 at Mount Etna has been demonstrated to be responsible for the reactivation of seismogenic structures on the western side of the volcano (Bonanno et al., 2011). In Bonanno et al. (2011), the intrusive process was modelled as an inflating Mogi source located at 5.5 km depth, but in the present work, we highlight the crucial role of the boundary condition set in the model (source depth) and we show the possible scenarios with a shallower MR depth (Model M1).

Gresta et al. (2005) highlighted that earthquakes along PF and STF were induced by the static stress variations associated to the emplacement of eruptive dikes during the 1981 and 2001 eruptions, respectively. In greater detail, the July-August 2001 eruption was characterized by a very complex field of flank eruptive fractures located largely on the upper southern slope of the volcano (Monaco et al., 2005). The eruption onset was preceded and accompanied by significant earthquakes (Patanè et al., 2003b) and marked ground deformations (Bonaccorso et al., 2002). The main source of deformations was modelled by a tensile dislocation located on the South Rift zone (Puglisi et al. 2008) as also confirmed by the Seismic Moment Tensor inversions of the best constrained earthquakes that heralded the opening of the eruptive fractures (Saraò et al., 2010). Our present model M2A takes into account of the main behaviour of the magmatic source for this eruption well.
The October 2002 - January 2003 eruption occurred on two sides of the volcano, along the upper north-eastern (NE Rift zone) and southern (South Rift Zone) flanks. Once again, earthquakes and ground deformations preceded and accompanied the opening of the eruptive fractures notably (Barberi et al., 2004 and reference there in). The two intrusive dikes have been satisfactorily modelled by two separate tensile dislocations (Aloisi et al., 2003). During the first stage of the eruption, several seismogenic structures on the eastern flank became successively active. This was explained as due to the transfer of elastic stress from the magmatic source to faults (PR and PF) and afterwards from faults to faults (Barberi et al., 2004). Our present model M2B is schematically representative of the first stage of the above cited domino effect phenomena.

Finally, the 2004–2005 eruption emitted a highly degassed magma from a sub-terminal fracture. During the first weeks of activity, the erupted magma was already residing inside the volcano, probably since the 2002-2003 eruption, while later it mixed with new magma a new one ascending through the central conduits system (Corsaro et al., 2009). Magma intruded passively due to the exceptional extension on the summit area caused by the large sliding of the eastern flank of the volcano (almost 9 cm of slip; Bonaccorso et al., 2006). The east flank sliding toward the sea is able to induce a decompression on the shallow magma plumbing system as foreseen by our model M3 that simulates the unstable condition of this sector.

In this work we have investigated, by using the Boundary Element Method, how (i) the inflating of a deep spherical source interacts with a sliding plane and with faults and rift elements; (ii) the opening of eruptive fissures affects the sliding movement of the eastern sector of Mount Etna, encouraging earthquakes occurrence on fault planes; and (iii) the instability of the eastern flank governs the kinematics of faults and/or triggers the ascent of magma.

The results presented here are strongly dependent on all the assumptions made. In particular, the lack of seismological constraints (hypocenter patterns and compatible fault plane solutions) for the sliding plane induced us to simplify the geometry of a detachment volume that remains/lie at the base of the instable sector. Nevertheless, our numerical results show good agreement with
deformation measurements that well describe the eastern flank dynamics of Etna volcano (e.g., i.e. Bonforte et al., 2008; Puglisi et al., 2008). The strength of our approach consists in evaluating the distribution of the CFS pattern along the receiver fault planes using numerical simulations, taking into account the effects of topography and with a processing time of about tens of minutes.

The main results obtained are the following:

1. The inflation of a magma reservoir encourages the slip on the westernmost segment of the Pernicana fault (PF).
2. The depth of MR is crucial, very shallow depth MR promote seaward movement of the eastern flank, while deeper MR (3.0 - 5.5 km) inhibit the movement.
3. Dikes intruding either on the NE or/and South Rift Zones favor the sliding of the planar source in its upper part and along the westernmost of PF.
4. The intrusion (opening) of a South dike favors the closure of a NE dike, while at the same time the opening of NE tensile fracture inhibits the ascent of magma along the South zone.
5. The intrusion of a NE dike (for dimension and kinematics) favors the Eastern flank sliding, more than the opening of an S dike.
6. The opening of a NE dike encourages the decompression of the magma plumbing system (depth = 3.0 km), evaluated by a high negative value of volumetric strain.
7. The passive sliding of SP promotes an increase of CFS on the westernmost and the central segments of PF. Its easternmost segments are brought close to failure at their bases.
8. The unstable condition of flank sliding toward the sea may affect the magmatic system and decompression of plumbing system may lead to a new magma ascent.
9. The western part of Pernicana fault (PF1) experienced a positive CFS for all the scenarios hypothesized. The other segments underwent a positive stress variation only in M2B and M3. In particular, Model M2B highlights the governing role of the intrusion in the NE Rift on the dynamics of this structure and on the dynamics of the Provenzana fault too.
Other faults considered seem to be less sensitive to the stress variation induced by sources considered, with the exception of three structures. SLF and MF underwent a significant positive CFS variation in model M2B, and TTF experienced an increase in static stress in model M3.

The above listed results schematically represent possible scenarios of the evolution of the kinematic “activity” of Mount Etna volcano. The three basic elements: (magma dynamics, earthquake occurrence and flank instability) interact with each other, alternating their active or passive role in a broader combination of domino effects.

Our results are in a general agreement with the findings of Walter et al. (2005), despite the significant differences in the structural setup and in the definition of geometrical characteristics of the single geological objects. The main difference regards the effect of interaction between magma reservoir and sliding plane; as a matter of fact, the latter was defined by Walter et al. (2005) with geometrical characteristics that are entirely different from those hypothesized in this paper. Currenti et al. (2008) use a very simplified structural setup taking into account only the two rift zones and the main fault systems in eastern flank. Regardless of differences, the result obtained are similar with the exception of the NE dike response to an intrusion in the South rift. Currenti et al. (2008) have also demonstrated that the introduction of an heterogeneous medium induces variation in the intensity of $\Delta$CFS (as a function of modelled elastic parameters), but does not distort the geometrical pattern. The authors also show how the stress shape is affected by Mt. Etna topography. The main discrepancies are largely restricted to the volcano summit area because of the accentuated topography.

We note that the strength of our approach lies in the fact that we evaluate the distribution of the CFS pattern while taking into account the relevant effects of topography. In addition, we use a method that requires a processing time of some tens of minutes.
It allows modifying an evolving erupting scenario simply by adding or altering magmatic sources and/or receiving structures without needing any further computational time that other numerical methods require (e.g., re-mesh of medium in Finite Element Method). The real-time seismic and geodetic networks currently operating on Mt. Mount Etna are able to provide good enough data (both in number and quality) to satisfactorily (and rapidly) constrain the source(s) responsible for volcanic unrest. The application of the Boundary Element Method during volcanic unrest appears to be a promising tool for providing in near real-time some possible scenarios of the evolving volcanic activity in near real-time in terms of eastern flank sliding and/or activation of either (both) seismogenic faults and/or magma bodies.

Acknowledgments

This work was funded by the INGV-DPC project V4_Flank. We thank Stephen Conway for correcting and improving the English. Amalia Bonanno was supported by INGV-DPC fellowships.

We thank the editor Joan Marti and two anonymous reviewers for the careful revision that enabled improving the paper significantly. The DEM used in this paper is the result of the integration of data available at INGV, in particular the DEM_Sicilia 1999 (Tarquini et al., 2007) and the DEM_Lidar 2005 (Neri et al., 2008). This DEM was produced in the framework of the ASI-SRV project, and INGV-DPC V4-Flank project, thanks to Dr. F. Guglielmino (INGV, Osservatorio Etneo).
References


Figure captions

Figure 1. Structural sketch map of Mount Etna: Provenzana Fault (PR); Pernicana fault (PF); Santa Venerina fault (SVF); Timpe fault system STF; Moscarello fault (MF); Tremestieri–Trecastagni fault (TTF); San Leonardello Fault (SLF); Central Craters (CC); South Rift and North–East Rift are also indicated. In the upper inset, the location of Mount Etna in the central Mediterranean area and a simplified geological map of eastern Sicily are also reported. The INGV-G-DEM is in the WGS84 reference system and the projection is UTM33.

Figure 2. a) Top view and b) prospective view of the boundary Element model built in Poly3D environment show spatial relationships between topography, faults, magmatic reservoir, eruptive fractures, sliding plane and faults. For structure legend see tables 1 and 2.

Figure 3. Sketch of four models proposed showing: M1) Inflation of Magmatic Reservoir (MR); M2A) Opening of South Dike (SD); M2B) Opening of North-East Dike (NED); M3) Transtensive movement of Sliding Plane (SP); the acting sources (red) and the receiver structures (black) are drawn. For faults legend see table 2.

Figure 4. Three dimensional view showing the pattern of $\Delta CFS$ produced by inflation of MR (M1) along modeled fault planes; Opening of SD (M2A); Opening of NED (M2B) and Transtensive movement of SP (M3). The color bar specifies only the relative maximum and minimum $\Delta CFS$ values. These values calculated for each single plane-structure are reported in Tables 3-6.
Figure 5. Three dimensional view showing the pattern of the displacement produced by inflation of MR (M1) along modeled fault planes; Opening of SD (M2A); Opening of NED (M2B) and Transtensive movement of SP (M3). The color bar specifies the maximum and minimum displacement values that are reported for each single structure in Tables 3-6. The color bar specifies only the relative maximum and minimum displacement values. The maximum displacement values calculated for each single plane are reported in Tables 3-6.
Table 1. Description of deformation source inputs used in the numerical modeling. Xc, Yc and Zc represent the location of the center, while L and W correspond to length and width for each source.

Table 2. Position and geometrical parameters of receiver fault planes modeled in Poly3D program (for symbols explanation see table 1).

Table 3. Coulomb stress changes and displacements \((U)\) induced on considered structures (see table 1 and 2 for structure names) by the inflation of MR (model M1).

Table 4. Coulomb stress changes and displacements \((U)\) induced on considered structures (see table 1 and 2 for structure names) by the opening of SD (model M2A).

Table 5. Coulomb stress changes and displacements \((U)\) induced on considered structures (see table 1 and 2 for structure names) by the opening of NED (model M2B).

Table 6. Coulomb stress changes and displacements \((U)\) induced on considered structures (see table 1 and 2 for structure names) by the transtensive movement of SP (model M3).
<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Xc (m)</th>
<th>Yc (m)</th>
<th>Zc (m)</th>
<th>L (m)</th>
<th>W (m)</th>
<th>Dip (°)</th>
<th>Dislocation (m)</th>
<th>N° nodes</th>
<th>N° elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>NED</td>
<td>Northeastern Dike</td>
<td>501518.5</td>
<td>4181600</td>
<td>960.4715</td>
<td>5956</td>
<td>3914</td>
<td>90</td>
<td>Opening 2.5</td>
<td>511</td>
<td>893</td>
</tr>
<tr>
<td>SD</td>
<td>Southern Dike</td>
<td>500053</td>
<td>4175720</td>
<td>1071.465</td>
<td>3132</td>
<td>3022</td>
<td>90</td>
<td>Opening 2.5</td>
<td>691</td>
<td>1234</td>
</tr>
<tr>
<td>SP</td>
<td>Sliding Plane</td>
<td>517526</td>
<td>4170940</td>
<td>-2997.11</td>
<td>20000</td>
<td>25000</td>
<td>11</td>
<td>Left Lateral</td>
<td>6519</td>
<td>12736</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.077 Normal slip</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td>Magmatic Reservoir</td>
<td>499593</td>
<td>4177480</td>
<td>-2900</td>
<td>R = 1000</td>
<td>ΔV 7.9*10e6</td>
<td>815</td>
<td>1624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Tectonic Lineament</td>
<td>Xc</td>
<td>Yc</td>
<td>Zc</td>
<td>L</td>
<td>W</td>
<td>Dip</td>
<td>Nº Nodes</td>
<td>Nº Elements</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>Provenzana Fault</td>
<td>503089</td>
<td>4183165</td>
<td>492</td>
<td>2326</td>
<td>4000</td>
<td>87</td>
<td>473</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>PF1</td>
<td>Pernicana Segment 1</td>
<td>506317</td>
<td>4184280</td>
<td>311</td>
<td>4972</td>
<td>4000</td>
<td>87</td>
<td>703</td>
<td>1241</td>
<td></td>
</tr>
<tr>
<td>PF2</td>
<td>Pernicana Segment 2</td>
<td>510575</td>
<td>4183870</td>
<td>-9</td>
<td>3465</td>
<td>4000</td>
<td>87</td>
<td>583</td>
<td>1049</td>
<td></td>
</tr>
<tr>
<td>PF3</td>
<td>Pernicana Segment 3</td>
<td>513277</td>
<td>4182470</td>
<td>-131</td>
<td>4582</td>
<td>4000</td>
<td>87</td>
<td>572</td>
<td>1015</td>
<td></td>
</tr>
<tr>
<td>PF4</td>
<td>Pernicana Segment 4</td>
<td>516913.5</td>
<td>4180680</td>
<td>-418</td>
<td>2962</td>
<td>4000</td>
<td>87</td>
<td>495</td>
<td>873</td>
<td></td>
</tr>
<tr>
<td>STF1</td>
<td>S. Tecla Fault 1</td>
<td>512725.5</td>
<td>4168130</td>
<td>-1065</td>
<td>7602</td>
<td>1948</td>
<td>87</td>
<td>353</td>
<td>624</td>
<td></td>
</tr>
<tr>
<td>STF2</td>
<td>S. Tecla Fault 2</td>
<td>515354.5</td>
<td>4162020</td>
<td>-1376</td>
<td>6252</td>
<td>2809</td>
<td>87</td>
<td>342</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>SVF</td>
<td>S.Venerina Fault</td>
<td>512891</td>
<td>4169375</td>
<td>-1013</td>
<td>5556</td>
<td>2577</td>
<td>87</td>
<td>313</td>
<td>536</td>
<td></td>
</tr>
<tr>
<td>SLF</td>
<td>S.Leonardello Fault</td>
<td>515289.5</td>
<td>4170575</td>
<td>-1302</td>
<td>9040</td>
<td>2788</td>
<td>87</td>
<td>304</td>
<td>513</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>Moscarello Fault</td>
<td>513805</td>
<td>4170660</td>
<td>-1074</td>
<td>11190</td>
<td>2664</td>
<td>87</td>
<td>231</td>
<td>374</td>
<td></td>
</tr>
<tr>
<td>TTF</td>
<td>Tremestieri - Trecastagni Fault</td>
<td>508857.5</td>
<td>4159625</td>
<td>-1265</td>
<td>6377</td>
<td>3252</td>
<td>87</td>
<td>340</td>
<td>1227</td>
<td></td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th></th>
<th>Coulomb (bars)</th>
<th>Stress Component (bars)</th>
<th>U (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>Shear</td>
</tr>
<tr>
<td>PR</td>
<td>-3.0</td>
<td>-1.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>PF1</td>
<td>0.3</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>PF2</td>
<td>-0.5</td>
<td>-0.2</td>
<td>-0.4</td>
</tr>
<tr>
<td>PF3</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>PF4</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>STF1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>STF2</td>
<td>-0.1</td>
<td>-0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>SVF</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>SLF</td>
<td>-0.1</td>
<td>0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>MF</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>TTF</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>SP</td>
<td>-1.9</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>SD</td>
<td>-20.7</td>
<td>-0.2</td>
<td>$\Delta \sigma$ (bars)</td>
</tr>
<tr>
<td>NED</td>
<td>-8.3</td>
<td>0.4</td>
<td>$\Delta \sigma$ (bars)</td>
</tr>
<tr>
<td></td>
<td>Coulomb (bars)</td>
<td>Stress Component (bars)</td>
<td>U (cm)</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>Shear</td>
</tr>
<tr>
<td><strong>PR</strong></td>
<td>-4.5</td>
<td>-0.8</td>
<td>-3.1</td>
</tr>
<tr>
<td><strong>PF1</strong></td>
<td>-0.7</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td><strong>PF2</strong></td>
<td>-1.2</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td><strong>PF3</strong></td>
<td>-0.7</td>
<td>0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td><strong>PF4</strong></td>
<td>0.3</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td><strong>STF1</strong></td>
<td>-2.2</td>
<td>-0.3</td>
<td>-1.0</td>
</tr>
<tr>
<td><strong>STF2</strong></td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td><strong>SVF</strong></td>
<td>-2.1</td>
<td>-0.5</td>
<td>-1.2</td>
</tr>
<tr>
<td><strong>SLF</strong></td>
<td>-0.3</td>
<td>0.7</td>
<td>-0.2</td>
</tr>
<tr>
<td><strong>MF</strong></td>
<td>0.3</td>
<td>1.6</td>
<td>-0.3</td>
</tr>
<tr>
<td><strong>TTF</strong></td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td><strong>SP</strong></td>
<td>-8.8</td>
<td>2.6</td>
<td>-0.5</td>
</tr>
<tr>
<td><strong>MR</strong></td>
<td>-6.42E-05</td>
<td>1464.33</td>
<td>Δε</td>
</tr>
<tr>
<td><strong>NED</strong></td>
<td>-32.4</td>
<td>-0.1</td>
<td>Δσ (bars)</td>
</tr>
</tbody>
</table>
Table 5

<table>
<thead>
<tr>
<th></th>
<th>Coulomb (bars)</th>
<th>Stress Component (bars)</th>
<th>U (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>Shear</td>
</tr>
<tr>
<td>PR</td>
<td>-135.0</td>
<td>323.5</td>
<td>38.9</td>
</tr>
<tr>
<td>PF1</td>
<td>6.3</td>
<td>102.2</td>
<td>20.8</td>
</tr>
<tr>
<td>PF2</td>
<td>1.9</td>
<td>3.4</td>
<td>4.4</td>
</tr>
<tr>
<td>PF3</td>
<td>-2.9</td>
<td>-0.7</td>
<td>-2.7</td>
</tr>
<tr>
<td>PF4</td>
<td>0.0</td>
<td>0.7</td>
<td>-0.1</td>
</tr>
<tr>
<td>STF1</td>
<td>-2.0</td>
<td>-0.5</td>
<td>-1.8</td>
</tr>
<tr>
<td>STF2</td>
<td>-0.9</td>
<td>-0.4</td>
<td>-0.7</td>
</tr>
<tr>
<td>SVF</td>
<td>-2.4</td>
<td>-0.7</td>
<td>-2.2</td>
</tr>
<tr>
<td>SLF</td>
<td>1.2</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>MF</td>
<td>1.3</td>
<td>5.3</td>
<td>1.8</td>
</tr>
<tr>
<td>TTF</td>
<td>-0.5</td>
<td>-0.2</td>
<td>-0.6</td>
</tr>
<tr>
<td>SP</td>
<td>-18.5</td>
<td>5.7</td>
<td>-1.2</td>
</tr>
<tr>
<td>MR</td>
<td>-4.88E-05</td>
<td>-1.5E-5</td>
<td>Δε</td>
</tr>
<tr>
<td>SD</td>
<td>-25.9</td>
<td>-3.7</td>
<td>Δσ (bars)</td>
</tr>
</tbody>
</table>
Table 6

<table>
<thead>
<tr>
<th></th>
<th>Coulomb (bars)</th>
<th>Stress Component (bars)</th>
<th>U (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>Shear</td>
</tr>
<tr>
<td>PR</td>
<td>-0.5</td>
<td>0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>PF1</td>
<td>-0.7</td>
<td>1.7</td>
<td>0.6</td>
</tr>
<tr>
<td>PF2</td>
<td>-0.2</td>
<td>1.5</td>
<td>0.9</td>
</tr>
<tr>
<td>PF3</td>
<td>0.3</td>
<td>1.0</td>
<td>-0.7</td>
</tr>
<tr>
<td>PF4</td>
<td>1.3</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td>STF1</td>
<td>-0.2</td>
<td>0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>STF2</td>
<td>-24.9</td>
<td>0.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>STF3</td>
<td>-0.2</td>
<td>0.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>STF4</td>
<td>-0.1</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>MF</td>
<td>-0.2</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>TTF</td>
<td>-4.7</td>
<td>3.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>MR</td>
<td>1.97E-07</td>
<td>6.5E-7</td>
<td>Δε</td>
</tr>
<tr>
<td>Sdike</td>
<td>-0.9</td>
<td>0.2</td>
<td>Δσ (bars)</td>
</tr>
<tr>
<td>NEdike</td>
<td>-0.8</td>
<td>0.1</td>
<td>Δσ (bars)</td>
</tr>
</tbody>
</table>