Landslide hazard and critical rainfall in Southern Italy

M. Polemio
CNR-CERIST, Bari, Italy

F. Sdao
DISGG, Basilicata University, Potenza, Italy

ABSTRACT: Heavy rains are very often responsible for extensive mass movements. It has been the aim of this work to highlight the existence and intensity of the influence exerted by such rains in triggering selected landslides in Southern Italy, with reference to their main geomorphological features. Simple hydrological/statistical methods are suggested to predict landslide hazard caused by heavy rains.

1 INTRODUCTION

Heavy rains are one of the main natural factors producing landslides as they may cause pore pressure to increase on slopes, modify the slope's geometry as a result of erosion and originate swelling and softening processes in clay soils. Some experiences show that very seldom will rains alone trigger landslides; rather they impair borderline conditions of stability due to the overall effect of different phenomena that determine the slope's morphodynamic evolution. It follows that one cannot define right away how landslides and rainfalls are interrelated unless one has a thorough knowledge of how the sliding slope's morphology has been evolving. The purpose of study was then to define the role of rainfall events on selected landslides occurring in Southern Italy. Landslides of interest for investigations on rainfall/landslide correlations were identified at the urban areas of Senise, Castronuovo S. A., Calcinano and Agrigento (Fig. 1).

Fig. 1 - Location of examined landslides.

2 INVESTIGATED LANDSLIDES

The valley of Temples at Agrigento is characterized by the outcropping Pleistocene Agrigento Formation consisting, from below upwards, of marly or grey-blue sandy clays, medium to fine yellowish sand and calcarenites. Beneath that, as the grain size gradually decreases, the Monte Narbone formation (Pleistocene) is encountered which dates back to the Mid-Upper Pliocene and consists of marly and silty clays. The area is subject to severe geomorphological evolution as shown by the mobilization of large landslide bodies, many of which have been produced during this century. Among them, one can recognize the landslides of 1944, 1966 and 1976, designated as AG1, AG2 and AG3, respectively (Fig. 2): AG3 is the only landslide that was found to have been conditioned by previous precipitations (Cotecchia et. al. 1995).

AG3 is a large rotational slide, followed by the frontal toppling of disjointed calcarenite blocks (Table 1). This landslide has occupied an area of approx 0.43 Km², of which as much as 0.28 Km² was already occupied by a previous slide body. The main geometrical features of the landslide are summarized in Table 1.

Table 1. Geometrical features of investigated landslides

<table>
<thead>
<tr>
<th>Landslide</th>
<th>AG3</th>
<th>CS42</th>
<th>CA1</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>area (Km²)</td>
<td>0.43</td>
<td>0.20</td>
<td>0.05</td>
<td>0.003</td>
</tr>
<tr>
<td>thickness</td>
<td>18–22 m</td>
<td>60 m</td>
<td>20 m</td>
<td>10 m</td>
</tr>
<tr>
<td>max length</td>
<td>325 m</td>
<td>500 m</td>
<td>200 m</td>
<td>55 m</td>
</tr>
<tr>
<td>max width</td>
<td>180 m</td>
<td>500 m</td>
<td>200 m</td>
<td>55 m</td>
</tr>
<tr>
<td>crown elev.</td>
<td>100 m asl</td>
<td>750 m asl</td>
<td>325 m asl</td>
<td>370 m asl</td>
</tr>
<tr>
<td>toe elev.</td>
<td>60 m asl</td>
<td>650 m asl</td>
<td>240 m asl</td>
<td>350 m asl</td>
</tr>
<tr>
<td>gradient</td>
<td>17°</td>
<td>12 °, 15 °</td>
<td>18 °</td>
<td>19 °</td>
</tr>
<tr>
<td>involved geology</td>
<td>Calcareous Conglomerate</td>
<td>MEO-conglomerate</td>
<td>Clay</td>
<td>Sand</td>
</tr>
</tbody>
</table>
Fig. 2. Agrigento schematic geological map and landslides: 1) Alluvia; 2) Calcareous; 3) Clay and sandy clay; 4) Clay and marls; 5) strike and dip direction of strata; 6) investigated landslides (after Cotecchia, D’Ecclesiis & Polemio, 1995)

Fig. 2: Agrigento schematic geological map and landslides: 1) Alluvia; 2) Calcareous; 3) Clay and sandy clay; 4) Clay and marls; 5) strike and dip direction of strata; 6) investigated landslides (after Cotecchia, D’Ecclesiis & Polemio, 1995)

scarp, mostly running along a pre-existing fracture, extends at an elevation at 100 m asl and borders a landslide body, at least 22 m deep.

In April 1973 a huge rototranslational slide, called CSA2, disrupted an extensive portion of the suburban area at Castronuovo S. A. and severely injured some of the urban infrastructures (D’Ecclesiis et al. 1991) (Fig. 3). In this portion of territory a pleistocene sequence crops out consisting, from below upwards, of fine-grained, loose or more compact, quartzy-carbonate sands, hosting silt or clay levels; poligenic conglomerates with a sandy, or silty-sand matrix, either loose or closely cemented; sands, silty sands and scarcely cemented, or uncemented, reddish conglomerates. This sequence, which is conditioned by a monoclinal setup, appears to be heavily affected by fractures and faults oriented along two main tectonic directrices (WNW - ESE and NE - SW). The CSA2 landslide, covering an area of which at least 70 % had been previously affected by other mass movements, can be ascribed to a rototranslational slides (Fig. 3 and Table 1). This landslide is bordered along its upstream side by a clearcut tectonic fracture, mostly running along the main scarp: it extends over an area of about 0,3 Km2 and its maximum thickness is in the order of 50-60 m. The CSA1 is a large rotational slide occurred on 1953 in similar geomorphological conditions of CSA2 landslide.

The CA1 landslide is located quite close to the built-up area of Calciano (Fig. 1); it is developed in the structurally complex formation (Serra Palazzo Flysch) consisting of a strongly fractured and deformed succession of marly limestones, clay marls and marly clays containing sandstone layers and masses. The CA1 landslide is a partial remobilization of an ancient multiple rototranslational slides which originated at the margins of a vast area affected by deep gravitational slope deformations (Grassi et al. 1993). The main scarp of ancient landslide extends at elevation between 325-400 m asl while its foot portion is very likely buried below recent and present deposits of the Basento river (Fig. 4). The main slip
surface cuts into marly clays soils, and is located at depths of up to 30-40 m. In 1985, the mid-lower portion of an ancient landslide body underwent a significant remobilization (CA1) revealed by surficial displacements of a few meters and was a few centimeters deep. In depth, the movement occurred inside the old landslide body with two different slip surfaces: the deeper one is located at about 20 m below field level.

In the of winter 1984-85, the eastern urban area at Senise underwent some mass movements which caused remarkable damage (Catenacci 1993, Lazzari et al. 1991). The area shows outcrops of the Aliano Sands formation (Pleistocene), consisting of fine to medium-grained silty or clays sands, which may be either perfectly dissolved, though always firmly thickened, or may be loosely cemented. The formation is characterized by a monoclinal structure with down-slope dipping strata. The landslides that developed in March 1985 are located in the eastern urban portion: one is rather close to the Timpone Hill, in the Santa Maria delle Grazie neighbourhood, the other one, termed S1, in the Aria Marina locality (Table 1) (Del Prete et al. 1991, Catenacci 1993). Both these landslides are partial remobilizations of a preexisting landslide body. S1 started inside an old landslide body underlying most of the eastern slope of the relief where Senise is located. It originates from a translational slide which occurred on a slip surface at a depth of about 10 m.

3. HYDROLOGIC STATISTICS OF CUMULATIVE RAINFALL

Determining the influence of rainfall upon landslides requires a thorough approach that is only possible if an overall understanding of the soils forming the slope has been acquired. To do so, one must develop a clear picture of the modes of surface and groundwater flow: where groundwater flow is concerned, attention should be focused on both the saturated and the unsaturated zones, and complete hydrological models of slopes must be constructed (Beven et al. 1987, Cascini & Versace 1986). Despite their complexity, however, such models do not cover some phenomena that cannot be overlooked, such as the air reverse flow in the unsaturated zone.

Should the numerous expensive data required to this effect not be available, precious indications can still be obtained by more streamlined hydrological models. Usually, these are empirical or semi-empirical models of the analysis of precipitation-landslide relation. Among them, the hydrological/statistical models were devised as a means of investigating, through the study of the selected hydrological variable, to what extent the rainfall event believed to be associated with a given landslide has been exceptional (Polemio, 1993). Thanks to these models, the exceptional character of landslide-related rainfall events can be explained in terms of recurrence intervals or return period T. As a result, one can determine the statistical cyclicity by...
which a slope has been subjected to hydrologic conditions similar to those considered in this study. For sake of brevity, reference is here made to the attached bibliography. However, studies on statistical hydrology suggest using two parent functions or probability distribution functions, as in the examples described below (Polemio 1993). The GEV (Generalized Extreme Value) function is univocally determined by the serial number of the day on which measurements were taken over the observation period of about 60 years. The highest values PCMAX, were extracted, for each year y, from the generated series of data. The method described earlier in this work was applied to the variables, cumulative daily rains PC,j, where j stands for 1 to 180 consecutive days and is the serial number of the day on which measurements were taken over the observation period of about 60 years. The investigated slopes were found to be stable during the rains whose cumulative variables, whichever n is, had longer recurrence intervals than those that can be associated with the landslide: this is the most difficult problem encountered when working on the rainfall/landslide correlation. The empirical expressions relating intensity/duration of preceding rain allow simple and convenient critical straight curves to be defined in a log-log plane (Caine 1980, Gostelow 1991). Such critical curves change in agreement with local climate and geomorphology, often giving uncertain indications on possible links between preceding rains and landslides produced (Jibson 1989, Polemio 1993, Coteochia et al. 1995). For a rapid estimation of the hazard of rains, as they occur, or of their influence on fallen slides, it is proposed to define the generalized or normalized cumulative variables H by means of simple statistical expressions relating intensity/duration of preceding rain.

4 INVESTIGATED RAINFALL-LANDSLIDE

The climate in the four investigated areas (Fig. 1) is determined by the maritime, or Mediterranean, type of rainfall and by moderate temperatures; average annual rainfall is rather poor. In such cases using the more complex mixed functions, like TCEV, is justified.

The climate in the four investigated areas (Fig. 1) is determined by the maritime, or Mediterranean, type of rainfall and by moderate temperatures; average annual rainfall is rather poor. In such cases using the more complex mixed functions, like TCEV, is justified.
H variables appearing inside the significant interval are those corresponding to n=120 to 180; only for n=180, H takes positive and growing values as the landslide approaches. For slide AG2, H is always less than 1. For AG3, the H variables were found to be representable in the selected interval with any one n. Note that for n>60, the H variables rise steeply before the slides: the highest H value (55) is reached by H30. Consider that the H variables were negative for CSA1, while for CSA2 the generalized curnnack H, not represented here for brevity, were hardly above 1 only five days before the slide, the highest H value (14) was taken by the variable on the landslide day for n=60 and n=120. For CA1, our findings were similar to those described for AG3: for n=120 and n=150, H rises prior to the slide and takes peak values of about 70. For S1, the only H variables appearing inside the significant interval are for n>30; immediately before the slide, H is higher than 1 only for n>90. The highest H value was reached for n=120 and was equal to 20. It should be noted that at the n value at which \(H_{30} \) was found to attain its highest value, there corresponded the largest \(P_{ca} \) recurrence interval for all the investigated slides. Thus the representation proposed by Polemio (1993) produces expedient results that are in line with the hydrological and geomorphological studies carried out by several investigators (Polemio 1993, D'Ecclesiis et al. 1991, Lazzari et al. 1990); it also provides a tool by which one can compare the cumulative variables graphically - with whatever value of n - in relation to rainfall/landslide events at one or more sites. A graphic representation of the type proposed here offers the advantage that one can display the precipitation gradient over time: a persistent negative gradient prior to the landslide event seems to rule out the existence of a cause-to-effect relation. A value of H approximately equal to, or higher than, 25 could be associated with a low-middle landslide hazard.

The latest studies indicate that useful trigger models are those based on the Antecedent Precipitation Index (API), often a geometrically weighted API. A recent research work, based on API application to 18 rain/landslide events occurring in Southern Italy, shows what are the limits to this approach (Nadim et al. 1993).

Unlike the work done on the rainfall/flood correlations, the rainfall/landslide research deals with a subject -the slope- which, contrary to catchment areas, changes its own characteristic morphological, and often geotechnical, features with succeeding landslide events. This implies that, when constructing a trigger model, one should consider from a statistical viewpoint the time lapsed since the last movement or morphological change and the scale of these.

By a correct approach, one should undertake integrated studies on statistical hydrology and evolving morphology, especially targeted to the definition of trigger models (D'Ecclesiis et al. 1991, Cotecchia et al. 1995). In this respect, continuous and seasonal kinematically slow slides that are mobilized every 2 to 5 years in the average, are scarcely significant.

Rather than talking about trigger thresholds, one should talk of the hazard that certain hydrological events will influence slope stability. A classification of the influence of rains upon slope stability and of rain-induced landslide hazard has been worked out and is proposed here for this particular purpose (Fig. 5). As T increases, so do rain influence and landslide hazard; for the proposed landslide probability curve is a conceptual value: it will have a zero tangent for \(T=0 \) and will reach the limit value 1 as T approaches to infinity. Once we can use a larger number of case-studies and when the conclusions described in the two preceding paragraphs have been interpreted, we will be in a position to define better the landslide parent function.

5 CONCLUSIONS

This study highlighted how complex and how very diverse are the phenomena that govern the effects of rainfall upon slope stability. By having recourse to normalized cumulative variables, we obtained a fast graphical tool indicating the quality of the results that eventually emerged, and one that is of considerable use when rainfall/landslide events occurring at different sites are compared. The study showed that

Fig. 5. Rainfall return period and landslide probability. History case: in parenthesis return period (year) if it is known.
REFERENCES

