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SUMMARY


The increasing interest in AI as a powerful aid in solving civil engineering problems has suggested the realization of a domain-independent tool for knowledge-based systems construction. The paper provides the description of a fuzzy inference engine, which has appropriately been developed in order to both build knowledge bases and to perform evaluations. Knowledge acquisition issues and approximate reasoning techniques are also illustrated and discussed.





RESUME


L'interêt, de plus en plus remarquable, éveillé par l'IA comme aide puissante dans la résolution des problèmes de génie civil, a suggéré le développement d'un outil bien adapté à la construction de systèmes à base de connaissance, indépendamment du domain en considération. L'article décrit la réalisation d'un moteur inférentiel flou, qui peut être utilisé soit pour la création de bases de connaissance, soit pour obtenir des évaluations. Les problèmes les plus importants dans l'acquisition des connaissances et les techniques de raisonnement flou sont aussi illustrés et discutés.





ZUSAMMENFASSUNG


Das wachsende Interesse an der Verwendung künstlicher Intelligenz bei der Lösung von Problemen im Hochbau hat die Realisierung eines vom Wissensgebiet unabhängigen Shell für die Konstruktion von auf das Wissen basierten Systemen nahegelegt. Für dieses Shell wurde ein fuzzy-Inference Engine realisiert. Fragen der Wissensacquirierung und verwendete Techniken werden aufgezeigt.
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1 INTRODUCTION





"The past several years have seen intensive reaserch and development activities into the fundamentals of expert systems and their application to civil engineering problems. ... This has created a pressing need to improve the capability to acquire, assimilate, and codify knowledge that currently exists only in the form of personal engineering experience, judgements, and heuristics. Knowledge acquisition has thus become a crucial area for insuring continued progress in the development and application of expert systems." (Arciszewski & Rossman, 1992).


Perhaps the prevailing enthusiastic view is based on the increasing number of successful expert systems. However, problems in the development, maintenance, and enhancement of expert systems may severely restrict their integration into operational settings. There is no doubt about the fact that many of these problems involve faulty knowledge-base development methodologies. In fact, the developmental area most often cited as the "bottleneck" in expert system development is knowledge acquisition, i.e. the process of extracting and translating expert-level knowledge into rules that become the heart of an expert system.


The tool that is presented in this paper is intended to aid the domain expert in introducing his expertise, in form of rules, in a computer system, thus preventing the above mentioned problems from arising.


2 KNOWLEDGE ACQUISITION





Knowledge acquisition is concurrently referred to as the most important aspect of expert system development and the most problematic. It alternately has been tagged "knowledge extraction", "knowledge elicitation", and "knowledge acquisition". It refers to the "transfer and transformation of problem-solving expertise" from a knowledge source into rules to implement in a computer program.





The major knowledge acquisition stages are (Fig. 1):





conceptualization: it involves specifying how the primary concepts and key relationships among the concepts in the domain are depicted and related by domain experts;


formalization: it requires mapping the recognized concepts, subtasks, relations, into formal representation mechanisms;


implementation: it involves carrying formalized knowledge into an executable computer program connected with an inference engine. The primary goal of this stage is to develop a prototype system, which allows developers to test out design and representation mechanism decisions using only a small subset of the complete knowledge-base rules;


testing: it requires that the prototype system be evaluated as to the efficacy of the system's formalization. To enable appropriate testing, developers must investigate and select an appropriate test scenario or problem set. Once the chosen scenario has been applied to test the system, results from testing are used to revise the prototype. Common revisions may include reformulating initial concepts, refining knowledge representation schemes and interrelationships, etc.





2.1 What is knowledge?





According to Hayes-Roth et al., (1983), knowledge consists of symbolic descriptions of definitions, symbolic descriptions of relationships, and procedures to manipulate both types of descriptions. To understand these symbolic descriptions we must consider concepts.


Human use individual concepts to create their symbolic understanding of the world. A concept is a symbol that stands for a common characteristic or relationship shared by objects or events that are otherwise different.


The concepts we have learned, the way we have structured them into hierarchies, and our system for interweaving them comprise our personal method of organizing our worlds. This organization influences what we choose to attend to, how we perceive inputs, and how we organize what we sense. Consequently, it influences the thinking patterns, judgement, and perception of the domain experts.





2.2 Experience and knowledge





Experience influences knowledge organization, storage, and retrieval, heavily contributing to the metamorphosis from novice to expert. Experience is the factor that changes unrelated facts into expert knowledge. Experience using knowledge allows us to refine our reasoning precesses and determine the usefulness and adaptability of our existing internal rules. As we monitor the failures and successes that result from rule application and skill performance, certain rules and skills are reinforced or altered.


Superior organization of information (not merely more information) seems to be critical to expert performance. Not only do experts have more information, but they organize it into more meaningful "chunks". Chunks are groups of items that are stored and recalled together.


In contrast to the well-understood processes of conventional problems, there is a class of complex problems for which the algorithms and data are not explicitly known. Many of these problems can be termed knowledge-intensive.


Problems that requires developers to implement "intelligent" solution approaches are normally knowledge-intensive. Intelligence requires knowledge; this fact has been confirmed throughout the last twenty-five years of research in AI.


Traditionally, a characteristic of knowledge-intensive problems is the symbolic manipulation of the knowledge. Alternative methodologies will be referred to in the following sections. Conventional problems may be solved using numeric or algorithmic means, such as making rapid calculations, while problems in the AI domains require heuristic manipulation. In the AI domain, the manipulation is usually a reasoning process, such as an intelligent search activity.








3 a Knowledge-based Systems Building Tool (KSBT)





AI techniques, supported by appropriate mathemathical frameworks, has successfully been applied to solving knowledge-intensive problems, and, among them, structural engineering problems, notably in the field of seismic engineering. Aiming to fulfil the potential offered by such methodologies, a shell has been developed in order to provide expert users with the possibility to build expert systems, directly within a friendly environment. The utilization of this tool for knowledge construction is completely domain-independent. Both traditional reasoning methodologies and fuzzy logic (approximate reasoning, in particular), can appropriately be adopted in the representation of the domain knowledge and in the implementation of the inferential engine. While traditional reasoning is mainly based on the manipulation of symbols representing arbitrary objects in the domain and on matching techniques (symbolic elaboration of information), approximate reasoning can deal with the meaning of propositions, thus being characterized by the ability to perform a semantic elaboration of information.


A brief overview of the basic concepts related to the latter methodology is provided in the following section.





3.1 Fuzzy logic and approximate reasoning





A fuzzy logic FL, that is, a logic based on fuzzy set theory, may be viewed, in part, as a fuzzy extension of a nonfuzzy multi-valued logic, i.e. a logic whose truth values are represented by real numbers in the interval [0, 1] (usually the standard Lukasiewicz logic L1), which constitutes a base logic for FL. Truth values in FL are fuzzy subsets of the unit interval with linguistic labels such as true, false, not true, very true, quite true, more or less false, etc. The truth value set of FL is assumed to be generated by a context-free grammar, with a semantic rule assigning each linguistic term a meaning represented by a fuzzy subset of [0, 1].


One of the appealing features of fuzzy logic is its ability to deal with approximate causal inferences. According to Zadeh, approximate or, equivalently, fuzzy reasoning can be informally defined as a process by which a possibly imprecise conclusion is deduced from a collection of imprecise premises. More specifically, given an inference scheme "IF A THEN B" involving fuzzy propositions expressed in natural language, it is possible from a proposition A' that matches only approximately A, to deduce a proposition B' approximately similar to B, through a logical interpolation called generalized modus ponens. Such an inference is impossible in ordinary logical systems. The definition of a possibility distribution provides a natural basis for the representation of the meaning of fuzzy propositions, allowing its numerical computation and quantitative treatment (quantitative fuzzy semantics). Retranslation of possibility distributions in natural language can be accomplished by linguistic approximation procedures. Systematization of the use of words or sentences in a natural language for the purpose of an approximate characterization of the values of variables and their interrelations is accomplished by the concept of a linguistic variable (see Yager et al., 1987).





3.2 Use of the generalized modus ponens





The concept of a generalized modus ponens provides the basis for approximate deductions, allowing subjective judgements, once assigned a meaning and translated into linguistic values through a linguistic approximation procedure, to be treated as linguistic variables within a formal model of fuzzy inference.





Approximate inferences are often of the form:





			knowledge: IF x is A THEN y is B


			fact: x is A'


			________________________





			approximate conclusion: y is B'





(A, A' �SIMBOLO 206 \f "Symbol"� U; B, B' �SIMBOLO 206 \f "Symbol"� V, U and V universes of discourse).





The fuzzy conditional proposition "IF x is A THEN y is B" represents a certain relation between A and B.


A translating rule translates a fuzzy conditional proposition into a fuzzy relation in U �INCORPORA Equation ��� V.


The inference mechanism that has been realized is based on implication coupled with Zadeh's compositional rule of inference (max-min composition). Use of approximate reasoning with fuzzy logic has involved the determination of an appropriate rule for implication among those commonly occurring in literature. The axiomatic approach proposed in Baldwin, 1980, has been taken into account.


Some desirable properties have been postulated in order to assure an intuitive understanding of the nature of fuzzy deductions. First of all, the fundamental property of an implication rule is that the inference should never be more restrictive than the input truth function value. The preservation of strict monotonicity between the input truth function and the associated inference should also be a desirable characteristic (smoothness property). Furthermore, the inference should be unrestricted whenever the input is a false-characteristic in modus ponens and a true charactericstic in modus tollens (unrestricted inferences), and should preserve symmetry with respect to modus ponens and modus tollens inferences. Finally, for nested implications, inferences should be less and less restrictive as the number of implications in the nesting increases (propagation of fuzziness). Of the most common implication relations, the so-called arithmetic rule, given as





Ra(A, B) = �INCORPORA Equation ���


					 = �INCORPORA Equation ���





(u �SIMBOLO 206 \f "Symbol"� U; v �SIMBOLO 206 \f "Symbol"� V).





is the only one meeting these prerequisites. This rule has been widely accepted, as it has appeared to satisfy intuition in many applications.


It is noted that the arithmetic rule is based on the implication rule of Lukasiewicz logic, i.e.:





�INCORPORA Equation ���





Inferences of the form:





			knowledge: IF x1 is A1 AND x2 is A2 THEN y is B


			facts: x1 is A1' AND x2 is A2'


			______________________________________





			approximate conclusion: y is B'





(A1, A1' �SIMBOLO 206 \f "Symbol"� U1, A2, A2' �SIMBOLO 206 \f "Symbol"� U2; B, B' �SIMBOLO 206 \f "Symbol"� V),





have been translated into a fuzzy relation in U1 �INCORPORA Equation ��� U2 �INCORPORA Equation ��� V by an extended arithmetic rule, defined as





Ra(A1, A2; B) = �INCORPORA Equation ���


= �INCORPORA Equation ���





(u1 �SIMBOLO 206 \f "Symbol"� U1, u2 �SIMBOLO 206 \f "Symbol"� U2; v �SIMBOLO 206 \f "Symbol"� V).





It can be shown that the consequence B' is given as the union of the consequences B1' and B2' of ordinary fuzzy reasoning such that





			knowledge: IF x is A1 THEN y is B


			fact: x is A1''


			_______________________





			approximate conclusion: y is B'               (�INCORPORA Equation ���)





and





			knowledge: IF x is A2 THEN y is B


			fact: x is A2'


			_______________________





			approximate conclusion: y is B'              (�INCORPORA Equation ���)





The shell whose implementation is in progress is intended to the construction of rule-based fuzzy systems, i.e. systems directly encoding structured knowledge in the numerical framework introduced in the previous part of this section. Such systems map input fuzzy sets A to output fuzzy sets B. They stores separate fuzzy rules and in parallel fires each of them to some degree for each input (Fig. 2). Outputs Bm' are first obtained as consequences of each of the fired rules, and suitable decisional criteria are then adopted in order to determine the result of the inference process, which is finally assigned a meaning through linguistic approximation.





3.3 The inference engine





Knowledge construction is accomplished by means of a fuzzy inference engine using a PROLOG meta-interpreter. The backward chaining mechanism is represented in Fig. 3. As it can be seen, symbol matching is used in case of coincidence of facts with antecedents of the rules, while the compositional rule of inference is activated in case of approximate matching between facts and antecedents.


Expert users convey their knowledge on a specified domain in form of rules. Addition and modification of rules is accomplished with the use of a built-in vocabulary of terms in natural language; the corresponding possibility distributions are manipulated through the Lukasiewicz rule and the max-min composition. All possible valid inferences are obtained by activating the rules introduced in the knowledge base with input linguistic values varying according to the predefined term set.


Both edited rules and approximate conclusions (which, though mathematically correct being obtained by fuzzy calculus, may not represent properly the portion of the domain under consideration) are submitted to users' acceptance. Furthermore, a control module checks if new rules or results of valid inferences preserve the internal consistency of the knowledge base.


As previously pointed out, the utilization of this tool for knowledge construction is completely domain-independent.








4 CONCLUSION





One of the main purposes of the tool presented in this paper is to provide domain experts which usually are neither knowledge engineers nor have software developers capabilities a friendly support for developing expert systems 


Shell validation is being carried on in constructing an expert system for seismic vulnerability of buildings evaluation.
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