Bipolar climatology of GNSS ionospheric scintillation under quiet geomagnetic conditions

Lucilla Alfonsi¹, Luca Spogli¹, Giorgiana De Franceschi¹, Vincenzo Romano¹, Marcio Aquino², Alan Dodson² C. N. Mitchell³

¹ Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy
² Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Nottingham, UK
³ Department of Electronic and Electrical Engineering, University of Bath, United Kingdom

Special thanks to Prof. A. W. Wernik
Outline

• Introduction
• Data
• Method
• Results and discussion
• Remarks
• Next steps
Introduction

AIM
Develop a “scintillation climatology” over both polar areas
- Forecast of Space Weather events

WHERE
Receivers in Antarctica (2) and Northern Europe (4)
- Cusp/cap and auroral latitudes

WHEN
Year 2008 data
- Very quiet period
 - Useful for climatology

DATA
Scintillation data from INGV-IESSG-UoB network of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers
- NovAtel OEM4 dual-frequency
 - 50 Hz

METHOD
Scintillation occurrence maps
ROT (Rate of TEC) maps

Maps showing locations of receivers in Antarctica and Northern Europe.
Data

- Scintillation indices computed over **60 seconds** from L1 (1.57 GHz)
 - *Phase* σ_{ϕ}: $\sigma_{\phi}^2 = \langle \phi^2 \rangle - \langle \phi \rangle^2$
 - *Amplitude* S_4: $S_4^2 = \left(\langle I^2 \rangle - \langle I \rangle^2 \right) / \langle I \rangle^2$.

- Reducing tracking errors
 - $\alpha_{\text{elev}} > 20^\circ$ for both indices.

- Vertical quantities

<table>
<thead>
<tr>
<th>ID</th>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>CGLat</th>
<th>CGLon</th>
<th>Hemisphere</th>
<th>Days of data</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYA0</td>
<td>Ny-Ålesund</td>
<td>78.9°N</td>
<td>11.9°E</td>
<td>76.0°N</td>
<td>112.3°E</td>
<td>North</td>
<td>192</td>
<td>52.5</td>
</tr>
<tr>
<td>NYA1</td>
<td>Ny-Ålesund</td>
<td>78.9°N</td>
<td>11.9°E</td>
<td>76.0°N</td>
<td>112.3°E</td>
<td>North</td>
<td>317</td>
<td>86.6</td>
</tr>
<tr>
<td>LYB0</td>
<td>Longyearbyen</td>
<td>78.2°N</td>
<td>16.0°E</td>
<td>74.7°N</td>
<td>129.2°N</td>
<td>North</td>
<td>295</td>
<td>80.6</td>
</tr>
<tr>
<td>NSF1</td>
<td>Trondheim</td>
<td>63.4°N</td>
<td>10.4°E</td>
<td>63.0°N</td>
<td>103.2°E</td>
<td>North</td>
<td>295</td>
<td>80.6</td>
</tr>
<tr>
<td>DMC0</td>
<td>Concordia Station</td>
<td>75.1°S</td>
<td>123.2°E</td>
<td>84.4°S</td>
<td>222.6°E</td>
<td>South</td>
<td>356</td>
<td>97.3</td>
</tr>
<tr>
<td>BTN0</td>
<td>Mario Zucchelli Station</td>
<td>74.7°S</td>
<td>164.1°E</td>
<td>77.1°S</td>
<td>275.9°E</td>
<td>South</td>
<td>333</td>
<td>91.0</td>
</tr>
</tbody>
</table>
Method

- **Maps of percentage occurrence**
 - M_{lat} vs MLT
- **Percentage occurrence**
 - 1 bin = 1h MLT x 1° M_{lat}
- **Thresholds:**
 - 0.25 radians for σ_ϕ
 - 0.25 for S_4
- **Accuracy < 2.5 %**
 - Avoid low statistics bins
- **Feldstein auroral oval superimposed**
 - Different geomagnetic activity
 - Quiet period IQ=0 to 3
 - Electron density gradients on the boundaries

\[
\frac{N(S_4 \text{ or } \sigma_\phi > \text{threshold})}{N_{\text{tot}}} = 100 \cdot \frac{\sigma(N_{\text{tot}})}{N_{\text{tot}}} = \frac{100}{\sqrt{N_{\text{tot}}}}
\]
Results and discussion

- **Superposition of 3 effects (mainly Phase scintillation):**
 - Auroral oval boundaries
 - Ionospheric through walls
 - Polar cap patches
ROT maps

- ROT helps in identification of regions with intense TEC gradients
 - Maps ROT and ROTrms
- ROT 1-min distribution of the whole period (ex. South Hemisphere)
- Extract sub-distribution in each bin (same segmentation of percentage occurrence)
 - Get Mean
 - Get Root Mean Square
- Fill ROT and ROTrms maps
• Identification of polar cap patches
• Cusp region well drawn especially over south hemisphere
• ROTrms almost identical between 74° and 84° MLAT
• Interesting ROT feature around MLT noon over north hemisphere (?)
Correspondences (1/2)

Phase & ROT

![Phase & ROT plots](image-url)
Correspondences (2/2)
Amplitude & ROT
Remarks

- Scintillation data from GISTMs located over a wide range of latitudes in both hemispheres
- Scintillation occurrences map for a long quiet period (2008) has been produced
 - Auroral oval boundaries, trough walls and polar cap patches host scintillation
- ROT and ROTrms maps are useful to identify TEC structures
 - SigmaPhi seems to be more related to ROT
 - S4 seems to be more related to ROTrms
 - ROTrms is a sort of numerical second derivative of TEC \(\rightarrow \) DROTI(?!)
 - DROTI (TECU/min²) = \(8.5 \cdot 10^3v_F^2S4 \) (single phase screen assumption)
Next steps

- Enlarge the statistics to consider a significant variety of ionospheric conditions
- Seasonal variation of the scintillation occurrence
- Extend the climatology to equatorial latitudes
- Change thresholds in the scintillation occurrence definition
- Compare the maps with tomographic reconstructions by MIDAS
- Explore the information theory approach to understand ROT and ROTrms.
INGV scintillation and TEC data at: www.eswua.ingv.it

Thanks for your attention!

lucilla.alfonsi@ingv.it