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(Spain) ubiquitously show m- to cm-sized, microlite-rich domains (MRD) intermingled with 
volumetrically-dominant, microlite-poor ones (MPD). Glass and bulk composition show that MRDs 
formed by microlite crystallization of MPDs, the former residing longer in a relatively cooler, degassed 
zone lining the conduit walls, the latter traveling faster in the central, hotter streamline. MPD and MRD 
magmas intermingled along the interface between the two velocity zones. The proportion of MPD and 
MRD in different tephra layers reflects the extent of the fast- and slow-flowing zones, thus reflecting 
the ascent velocity profile of magma during the different phases. At Croscat, the MPD/MRD volume 
ratio increased rapidly during the early Strombolian activity, peaked around the Strombolian to violent 
Strombolian shift, and then decreased smoothly irrespective of shifts in eruptive style. We suggest that 
magma ascent velocity escalated during the Strombolian phase due to the buoyant push of the 
underlying, volatile-rich magma that was about to drive the following violent Strombolian activity. 
Monitoring the MPD/MRD ratio of tephra during ongoing scoria cone eruptions may reveal changes in 
magma flow conditions and could forecast the onset of hazardous violent Strombolian activity. 
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ABSTRACT 7 

Pyroclast textures document volcanic conduit processes and may be key to hazard 8 

forecasting. Here we show that the relative abundance of mingled, variably crystallized domains in 9 

pyroclasts from scoria cone eruptions provide a record of magma ascent velocity and can be used to 10 

predict the onset of violent Strombolian activity. Scoria clasts from the Croscat Complex Scoria 11 

Cone (Spain) ubiquitously show m- to cm-sized, microlite-rich domains (MRD) intermingled with 12 

volumetrically-dominant, microlite-poor ones (MPD). Glass and bulk composition show that MRDs 13 

formed by microlite crystallization of MPDs, the former residing longer in a relatively cooler, 14 

degassed zone lining the conduit walls, the latter traveling faster in the central, hotter streamline. 15 

MPD and MRD magmas intermingled along the interface between the two velocity zones. The 16 

proportion of MPD and MRD in different tephra layers reflects the extent of the fast- and slow-17 

flowing zones, thus reflecting the ascent velocity profile of magma during the different phases. At 18 

Croscat, the MPD/MRD volume ratio increased rapidly during the early Strombolian activity, 19 

peaked around the Strombolian to violent Strombolian shift, and then decreased smoothly 20 

irrespective of shifts in eruptive style. We suggest that magma ascent velocity escalated during the 21 

Strombolian phase due to the buoyant push of the underlying, volatile-rich magma that was about to 22 

drive the following violent Strombolian activity. Monitoring the MPD/MRD ratio of tephra during 23 

ongoing scoria cone eruptions may reveal changes in magma flow conditions and could forecast the 24 

onset of hazardous violent Strombolian activity. 25 
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INTRODUCTION 26 

Basaltic volcanism, ranging in intensity from effusive to violent explosive, is the prevailing 27 

volcanic activity on Earth. Of the variety of explosive styles shown by basaltic eruptions, ranging 28 

from Strombolian to Plinian intensities (e.g., Vergniolle and Mangan, 2000), violent Strombolian 29 

activity (MacDonald, 1972) is currently under reappraisal. An increasing number of past eruptive 30 

successions are being reclassified as violent Strombolian (Arrighi et al., 2001; Valentine et al., 31 

2005, 2007; Di Traglia et al., 2009), as are recently observed events, including the 1943–52 type-32 

eruption of Paricutin (MacDonald, 1972; Luhr and Simkin, 1993; Pioli et al., 2008), the 1995 Cerro 33 

Negro eruption (Hill et al., 1998), and the 2002–2003 eruption of Mt. Etna (Andronico et al., 2009). 34 

In all the above geological and historical cases, violent Strombolian activity represents the peak-35 

intensity phase of months- to years-lasting eruptions, punctuating other lower-intensity explosive 36 

and effusive phases and producing eruptive plumes several kilometers in height with occasional 37 

small-scale column collapses, posing severe threats to inhabited areas (Houghton et al., 2006; 38 

Andronico et al., 2009). 39 

Similar to other high-intensity explosive phases (Rosi et al., 2006; Sable et al., 2006), the 40 

onset of violent Strombolian activity during complex mafic eruptions is inferred to be related to the 41 

arrival of volatile-rich magma batches (Andronico et al., 2009; Pioli et al., 2008) and/or to changes 42 

in the rheological properties of magma, as related to microlite crystallization within the conduit 43 

(Valentine et al., 2005; Andronico et al., 2009), with conduit geometry and branching as additional 44 

controlling factors (Keating et al., 2008, Pioli et al., 2009). Violent Strombolian phases require 45 

relatively high magma mass flow and ascent velocities (Parfitt, 2004) as well as efficient magma 46 

fragmentation, as testified by grain-size and morphology (Andronico et al., 2009; Valentine and 47 

Gregg, 2008). Vesicularity of violent Strombolian scoriae, ranging between 50%–70% versus 30%–48 

80% in Strombolian scoriae (Polacci et al., 2008; Pioli et al., 2008; Di Traglia et al., 2009), and 49 

bubble number density (BND) values intermediate between Hawaiian and Plinian products, suggest 50 

relatively fast decompression of gas-rich magmas compared to lower intensity explosive eruptions 51 
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(Houghton and Gonnermann, 2008; Di Traglia et al., 2009). Pyroclasts from violent Strombolian 52 

products are typically porphyritic with both glassy and cryptocrystalline groundmasses (e.g., Pioli et 53 

al., 2008), interpreted to be the result of different degrees of magma crystallization within different 54 

zones of the conduit (Taddeucci et al., 2004). Large microlite contents are expected to change the 55 

rheological behavior of basaltic magma both during conduit flow (Lejeune and Richet, 1995) and at 56 

fragmentation (Taddeucci et al., 2007), ultimately controlling the eruptive style. 57 

In the present paper, we use textural features of mingled scoriae from the basaltic eruption 58 

of the Holocene Croscat Complex Scoria Cone (Spain) to shed light on conduit flow conditions 59 

during the transition from Strombolian to violent Strombolian activity, potentially offering a means 60 

to forecast the onset of hazardous violent Strombolian events during ongoing eruptions. 61 

The Croscat Complex Scoria Cone 62 

The Croscat Complex Scoria Cone (CCSC) is the youngest volcano of the Garrotxa 63 

Volcanic Field and of the whole Iberian Peninsula (11 ka; Guérin et al., 1985), and its volcanic 64 

succession provides an excellent example of highly variable activity within a single mafic eruption. 65 

The eruption started with fissural Hawaiian activity (LQU; Fig. 1), shifted to Strombolian 66 

explosions from a central vent (UQU), and then magma interaction with a shallow aquifer system 67 

promoted the first phreatomagmatic phase (CCU). The arrival of a relatively gas-rich, more 68 

primitive magma (as testified by trace element variations; Di Traglia et al., 2009), possibly 69 

decompressed by the preceding phreatomagmatic activity, drove three violent Strombolian phases, 70 

producing widespread tephra blankets (lower, middle and upper CMU). Subsequently, the activity 71 

shifted into a second, larger phreatomagmatic phase (CBU). The eruption ended with the emission 72 

of a lava flow (CXL) and consequent breaching of the western side of the cone. BND values in 73 

CCSC products reveal that ascent rate initially increased at the end of the Strombolian phase, then 74 

subsequently became constant during the violent Strombolian phase and finally decreased until the 75 

end of the eruption. Stratigraphy and erupted volumes suggest that eruption duration was in the 76 

short to average range of scoria cone eruptions (Di Traglia et al., 2009), i.e., several months. 77 
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Texture and Composition of Mingled Scoria Clasts 78 

From the best exposed proximal section of the cone we collected 14 samples representative 79 

of all tephra units and analyzed thin sections of scoria lapilli under binocular, petrographic, and 80 

Field-Emission Scanning Electron Microscope (FE-SEM) (see Methodological Appendix in the 81 

GSA Data Repository
1
). Scoriae from all stratigraphic units, irrespectively of the eruptive 82 

mechanism, show intermingling of two distinct textural domains that we term microlite-poor 83 

(MPD) and microlite-rich domains (MRD), respectively (Fig. 2). MPDs are made up of 84 

sideromelane glass (pale yellow to brown in thin section) with abundant spherical vesicles down to 85 

a few m in diameter, and include up to 1–2 vol.% of 1–50 m-sized microlites of plagioclase (Pl), 86 

clinopyroxene (Cpx), oxides (Ox), and occasional olivine (Ol). With respect to MPDs, MRDs 87 

(dark-opaque and tachylite-like in thin section) are less vesicular, include larger and more irregular 88 

vesicles, and contain a significantly larger fraction (15–43 vol.%) of the same microlites. Microlites 89 

are mostly euhedral, with evidence of zonation in the Cpx, subordinate skeletal habits occurring in 90 

Ol and Plg. Phenocrysts of Ol and Cpx equally occur in both domains. The two domains are 91 

commonly found intermingled in the same scoria clast, with individual domains ranging in size 92 

from ~30 m to the size of the whole clast. Domain boundaries, defined by a sharp (mostly <1 m-93 

thick) transition of glass composition (highlighted by the gray tone of BSE images), are mostly 94 

convoluted and show fluidal re-orientation of prolate microlites in MRDs, independent of clast or 95 

vesicle preferential orientations. 96 

Electron Microprobe (EMPA) and FE-SEM spot and bulk chemical analyses (see Appendix) 97 

of MPDs and MRDs show that interstitial glasses in MRDs follow a clear differentiation trend, with 98 

the MPD counterparts representing the most primitive extremity. Notably, MRDs bulk composition 99 

is comparable (within analytical error) to that of adjoined MPD glass (Fig. 2). 100 

In order to obtain a fast and accurate measure of the relative abundance of MPDs and MRDs 101 

up-section in the Croscat deposits, we classified 2–4 mm particles as “MR” or “MP” on the basis of 102 

their prevailing groundmass texture under petrographic microscope (see Appendix). The results 103 
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(Fig. 3) show a smooth trend, with a rapid increase of the MPD/MRD vol. ratio within the 104 

Strombolian deposit, a peak around the transition to violent Strombolian ones, and a gradual 105 

decrease up-section, with no major changes corresponding to shifts in eruptive style (e.g, the 106 

magmatic-phreatomagmatic transition). 107 

INTERPRETATION AND CONCLUSIONS 108 

Conduit Flow Dynamics During Complex Explosive Basaltic Eruptions 109 

The clear differentiation trend of interstitial MRD glasses, the chemical homogeneity of 110 

MRD bulk and MPD interstitial glass compositions, and the occurrence of an identical phenocrysts 111 

assemblage, all together reveal that MPDs and MRDs represent portions of the same magma that 112 

experienced different degrees of microlite crystallization. Microlite abundance and vesicle 113 

abundance and shape (e.g., Mangan and Cashman, 1996) suggest a longer conduit residence time of 114 

MRDs with respect to MPDs. Horizontal velocity gradients within conduits were already postulated 115 

to generate magma zoning during mafic explosive activity with respect to both vesicularity (Lautze 116 

and Houghton, 2005) and microlite crystallization patterns (Taddeucci et al., 2004). We hypothesize 117 

that MRDs resided longer in a relatively cooler zone lining the conduit margins, where degassing 118 

was also favored, while MPDs traveled faster in a hotter environment along the central streamline 119 

of the conduit. Groundmass textures thus would outline horizontal velocity gradients, averaged over 120 

the length of the MRD-forming zone of the conduit. We note that, in the CCSC case, such gradients 121 

persisted throughout the eruption. 122 

The mingling of MPDs and MRDs may illuminate flow dynamics of the velocity-zoned 123 

CCSC conduit. In our scenario, the two domains mingle at the boundary between the two zones of 124 

the conduit with different ascent velocities. This boundary, given the lack of domains texturally and 125 

compositionally intermediate between MPD and MRD, was relatively sharp and hosted, at least 126 

locally, turbulent flow conditions, as testified by the convoluted morphology of the domains. 127 

Physical mingling was driven by the velocity gradient occurring between the two domains and 128 



Publisher: GSA 

Journal: GEOL: Geology 

Article ID: G30720 

Page 6 of 12 

controlled by their strong rheological contrast, as related to the high solid fraction of MRDs (Fig. 129 

4). 130 

The MPD/MRD volume ratio of erupted products reflects the extent of the two domains at 131 

fragmentation as related to variable magma flow conditions, and is expected to be mainly controlled 132 

by conduit geometry (specifically the volume/surface ratio) and magma ascent velocity. In the 133 

CCSC case, the dispersal and country-rock content of erupted products, which are proxies to 134 

changes in conduit size or shape, do not correlate with MPD/MRD. Conversely, MPD/MRD 135 

broadly correlates positively with another, independent measure of magma ascent velocity, i.e., 136 

BND (Toramaru, 2006; Di Traglia et al., 2009), supporting the notion that velocity changes during 137 

the eruption caused the observed up-section variations in MPD/MRD, which, in this case, acts as a 138 

magma flow speedometer. 139 

The smooth variation of MPD/MRD in the eruption products points out equally smooth 140 

changes in magma flow conditions over the time scale represented by each of our samples, likely 141 

days to weeks. The fact that MPD/MRD varied smoothly irrespective of abrupt changes in eruptive 142 

style implies that the formation and mingling of the two domains occurred below the fragmentation 143 

zone, at a level deep enough not to be affected by external factors (e.g., contact with external water) 144 

but shallow enough to preserve the domains from mixing. 145 

Strombolian to Violent Strombolian Transition and Eruption Monitoring Implications 146 

The observed MPD/MRD trend indicates a rapid increase of magma ascent velocity during 147 

the Strombolian activity, peak velocity during the violent Strombolian phase, and a gradual velocity 148 

decrease until the end of the eruption. 149 

Focusing on the Strombolian to violent Strombolian transition, we note that, despite the 150 

large difference in their intensity and style, peak magma ascent velocity, as recorded by 151 

MPD/MRD, was similar during the two phases, and also during the intervening phreatomagmatic 152 

activity. Violent Strombolian activity was driven by a batch of magma slightly less evolved and 153 

more volatile-rich in comparison to that driving the earlier Strombolian one (Di Traglia et al., 154 
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2009). This volatile-rich magma exerted a strong buoyancy lift on the overlying, relatively gas-poor 155 

magma filling the conduit. The increasing magma ascent velocity during Strombolian activity could 156 

reflect a combination of two factors: 1) the increasing buoyancy of the gas-charged magma as it 157 

ascended, magmastatic pressure decreased, and bubbles expanded; and 2) the progressive reduction 158 

of viscous resistance as the gas-poor magma column was evacuated, also favored by the decrease in 159 

the thickness of the microlite-rich, more viscous conduit lining (see Lautze and Houghton, 2007). 160 

Even if accelerated to similar ascent velocities, the overlying magma drove moderate Strombolian 161 

activity due to its relatively low volatile content, in contrast with the underlying, volatile-rich 162 

magma that, reaching the surface, fueled violent Strombolian activity (Fig. 4). 163 

Mingled textures occur in other violent Strombolian eruption products (Andronico et al., 164 

2009; Pioli et al., 2008), suggesting that the processes active during the CCSC eruption may be 165 

common in complex basaltic explosive eruptions. Textural monitoring of pyroclasts during ongoing 166 

basaltic eruptions already proved to be capable of identifying, and to some extent anticipate, 167 

increasing intensity of basaltic explosive activity (Taddeucci et al., 2002). The CCSC case provides 168 

an interpretative framework for previous cases. Moreover, our methodology allows MPD/MRD to 169 

be measured within a few hours after sample collection (see Appendix) and may be included in 170 

textural monitoring of basaltic volcanoes. Daily MPD/MRD measures could reveal fluctuations in 171 

the magma ascent rate of ongoing eruptions, eventually heralding the arrival of gas-charged magma 172 

and the onset of more violent activity. 173 
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FIGURE CAPTIONS 266 

Figure 1. Location (a), integrated stratigraphy and sampled levels (b), and square root of area versus 267 

thickness plot for violent Strombolian deposits of the CCSC, also showing the fields of violent 268 

Strombolian and Subplinian deposits (after Arrighi et al. 2001) (c). 269 

Figure 2. a) Dark-gray, tachylite-like microlite-rich domains (MRD) and light-gray, sideromelane-270 

like microlite-poor (MPD) ones in mingled scoriae of the CCSC (polarized light). b, c) BSE image 271 

of the two domains. Note microlite-rich MRD groundmass (darker gray, silica-enriched interstitial 272 

glass) and MPD (lighter gray, silica-poor glass with higher vesicularity). Microlites are black, 273 

elongated Plg, gray, zoned Cpx, light gray Ol, and white Ox. d, e, f) fluidal morphologies of MRD 274 

(white outlines) with Ol phenocrysts (dark gray) occurring in both domains. g) CaO versus MgO 275 

plot of the interstitial glass (MPD and MRD) and bulk (MRD only) compositions from all samples 276 

(in the inset, an example of FE-SEM spot and raster areas for the chemical analysis of interstitial 277 

glass and bulk composition, respectively). 278 

Figure 3. Relative abundance (vol.%; ± 1 error bar) of MP clasts up-section in the Croscat 279 

deposits. Eruption duration is estimated to be several months. Dashed line (third order polynomial 280 

best fit) highlights the sharp increase in the MP clasts abundance in the UQU Strombolian deposits 281 

anticipating the CMU violent Strombolian ones.  282 
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Figure 4. Interpretative scheme of the Croscat eruptive conduit. a) Mingling interface between the 283 

MR and MP magmas (conduit margin and central flow line are toward the left and right hand sides 284 

of the figure, respectively). Grey arrows represent flow velocity. b) During the Strombolian phase, 285 

magma flow velocity is relatively low and the MR zone is well developed. c) The buoyant lift from 286 

the underlying, volatile-rich magma increases flow velocity and reduces the MR zone. d) Flow 287 

velocity escalates as volatile-rich magma vesiculates and the more viscous, volatile-poor magma is 288 

evacuated. e) Flow velocity decreases after the first arrival of the gas-charged magma and the onset 289 

of violent Strombolian activity. Similar ascent velocities in c) and e) result in very different activity 290 

at the vent due to the different volatile content of the erupting magma. 291 

1
GSA Data Repository item 2009xxx, xxxxxxxx, is available online at 292 

www.geosociety.org/pubs/ft2008.htm, or on request from editing@geosociety.org or Documents 293 

Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 294 
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